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Preface

The present book includes extended and revised versions of a set of selected papers
from the Seventh International Joint Conference on Computational Intelligence
(IJCCI 2015). IJCCI was sponsored by the Institute for Systems and Technologies
of Information, Control and Communication (INSTICC). This conference was held
in Lisbon, Portugal, from November 12 to 14, 2015.

IJCCI was technically co-sponsored by IEEE Systems, Man, and Cybernetics
Society and by International Federation of Automatic Control (IFAC). It was held
in cooperation with the ACM SIGAI—ACM Special Interest Group on Artificial
Intelligence, AI*IA Associazione Italiana per l’Intelligenza Artificiale, INNS—
International Neural Network Society, AAAI—Association for the Advancement of
Artificial Intelligence, EUSFLAT—European Society for Fuzzy Logic and
Technology, APPIA Associação Portuguesa para a Inteligência Artificial, IFSA—
International Fuzzy Systems Association and APNNA—Asia Pacific Neural
Network Assembly. Since its first edition in 2009, the purpose of the International
Joint Conference on Computational Intelligence (IJCCI) has been to bring together
researchers, engineers and practitioners in computational technologies, especially
those related to the areas of fuzzy computation, evolutionary computation, and
neural computation. IJCCI is composed of three co-located conferences, each one
specialized in one of the aforementioned areas, namely:

– International Conference on Evolutionary Computation Theory and
Applications (ECTA)

– International Conference on Fuzzy Computation Theory and Applications
(FCTA)

– International Conference on Neural Computation Theory and Applications
(NCTA)

Their aim is to provide major forums for scientists, engineers and practitioners
interested in the study, analysis, design, and application of these techniques to all
fields of human activity. In ECTA, evolutionary computation is associated with
systems that use computational models of evolutionary processes as the key ele-
ments in design and implementation, i.e., computational techniques which are based
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to some degree on the evolution of biological life in the natural world. A number of
evolutionary computational models have been proposed, including evolutionary
algorithms, genetic algorithms, evolution strategy, evolutionary programming, and
swarm intelligence. These techniques form the basis of several disciplines such as
artificial life and evolutionary robotics. FCTA is concerned with modeling and
implementation of fuzzy systems, in a broad range of fields. Fuzzy computation is a
field that encompasses the theory and application of fuzzy sets and fuzzy logic to
the solution of information processing, system analysis and decision problems.
Supported by the information technology developments, fuzzy computation has
grown continuously during the last decades, and actually leads to major applica-
tions in many fields such as medical diagnosis, machine learning, image under-
standing, automation, and process control. NCTA is focused on modeling and
implementation of artificial neural networks (ANN) and neural computing archi-
tectures. Neural computation and ANN have seen an explosion of interest over the
last few decades, and are being successfully applied across an extraordinarily wide
range of problems and domains, in areas as diverse as finance, medicine, engi-
neering, geology, and physics, in problems of complex dynamics and complex
behaviour prediction, classification or control. Various structural designs, learning
strategies, and algorithms have been introduced in this highly dynamic field in the
last couple of decades.

The joint conference IJCCI received 127 paper submissions from 45 countries,
of which 20 % were presented as full papers. The high quality of the papers
received imposed difficult choices in the review process. To evaluate each sub-
mission, a double-blind paper evaluation method was used: each paper was
reviewed by at least two experts from the independent international Program
Committee, in a double-blind review process, and most papers had three reviews or
more. This book includes revised and extended versions of a strict selection of the
best papers presented at the conference.

On behalf of the Conference Organizing Committee, we would like to thank all
participants. First of all to the authors, whose quality work is the essence of the
conference, and to the members of the Program Committee, who helped us with
their expertise and diligence in reviewing the papers. As we all know, producing a
post-conference book, within the high technical level exigency, requires the effort
of many individuals. We wish to thank also all the members of our Organizing
Committee, whose work and commitment were invaluable.

November 2015 Juan Julián Merelo
Agostinho Rosa
José M. Cadenas
António Ruano
Kurosh Madani

António Dourado
Joaquim Filipe
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Abstract. If you are an artificial intelligence researcher, you should look
to video games as ideal testbeds for the work you do. If you are a video
game developer, you should look to AI for the technology that makes
completely new types of games possible. This chapter lays out the case
for both of these propositions. It asks the question “what can video games
do for AI”, and discusses how in particular general video game playing is
the ideal testbed for artificial general intelligence research. It then asks
the question “what can AI do for video games”, and lays out a vision for
what video games might look like if we had significantly more advanced
AI at our disposal. The chapter is based on my keynote at IJCCI 2015,
and is written in an attempt to be accessible to a broad audience.

Keywords: Artificial intelligence · Games · Artificial general intelli-
gence

1 Introduction

Video games and artificial intelligence are two of my favorite topics. Both as
work and hobby. The great thing is that they go together so well: there is a
great need for video games in artificial intelligence and for artificial intelligence
in video games. In this chapter, I discuss what video games can do for AI and
what AI can do for video games.

In the first part, I discuss the need for benchmarks in AI research and how
games have historically been used as AI benchmarks. I then argue the advantages
of video games over classic board games as AI benchmarks, and in particular
the advantages of general video game playing. I present the general video game
playing competition and benchmark, and the vision of having games both gen-
erated and played automatically. I discuss how this fits into the idea of artificial
general intelligence, the idea of developing AI that is good not only at a single
things but at all things, or at least most of them.

In the second part of the chapter, I discuss what AI can do in and for games.
Lots of things, it turns out—playing them is what most people think of first, and
it is true that there is a need for skilled and interesting adversaries and other
non-player characters in many games—but perhaps even more exciting is all the
possibilities that AI offers for modeling players, generating levels and perhaps
even whole games, adapting games to suit players, and assisting game designers.
The second section is structured as a vision of what playing an open-world game
c© Springer International Publishing AG 2017
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might be like in a future where we have the AI technologies to truly make the
game we like, followed by a brief description of some of the research challenges
involved in getting there.

It is important to note that this paper does not go into any technical depth
on any particular topic, nor is it a comprehensive survey of the field. It is instead
meant as an accessible, informal and inspirational introduction as well as a
long-form argument. It is equal parts propaganda and science fiction. However,
throughout the text I provide a number of references for further reading if you
are interested in knowing the technical details or the full state of the field.

2 What Video Games Can Do for AI

The most important thing for humanity to do right now is to invent true artificial
intelligence (AI): machines or software that can think and act independently in
a wide variety of situations. Once we have artificial intelligence, it can help us
solve all manner of other problems.

Luckily, thousands of researchers around work on inventing artificial intelli-
gence. While most of them work on ways of using known AI algorithms to solve
new or existing problems, some work on the overarching problem of artificial
general intelligence. I do both. As I see it, addressing applied problems spur
the invention of new algorithms, and the availability of new algorithms make it
possible to address new problems. Having concrete problems to try to solve with
AI is necessary in order to make progress; if you try to invent AI without having
something to use it for, you will not know where to start. My chosen domain is
games, and I will explain why this is the most relevant domain to work on if you
are serious about AI.

But first, let us acknowledge that AI has gotten a lot of attention recently.
In particular work on “deep learning” is being discussed in mainstream press
as well as turned into startups that get bought by giant companies for bizarre
amounts of money. There have been some very impressive advances during the
past few years in identifying objects in images, understanding speech, matching
names to faces, translating text and other such tasks. By some measures, the
winner of the recent ImageNet contest is better than humans at correctly naming
things in images [1,2]; sometimes I think Facebook’s algorithms are better than
I am at recognizing the faces of my acquaintances [3].

With few exceptions, the tasks that deep neural networks have excelled at
are what are called pattern recognition problems [4]. Basically, take some large
amount of data (an image, a song, a text) and output some other (typically
smaller) data, such as a name, a category, another image or a text in another
language. To learn to do this, they look at tons of data to find patterns. In other
words, the neural networks are learning to do the same work as our brain’s
sensory systems: sight, hearing, touch and so on. To a lesser extent they can also
do some of the job of our brain’s language centra.

However, this is not all that intelligence is. We humans don’t just sit around
and watch things all day. We do things: solve problems by taking decisions
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and carrying them out. We move about and we manipulate our surroundings.
(Sure, some days we stay in bed almost all day, but most of the rest of the
time we are active in one way or another.) Our intelligence evolved to help
us survive in a hostile environment, and doing that meant both reacting to
the world and planning complicated sequences of actions, as well as adapting to
changing circumstances [5,6]. Pattern recognition - identifying objects and faces,
understanding speech and so on - is an important component of intelligence, but
should really be thought of as one part of a complete system which is constantly
working on figuring out what to do next. Trying to invent artificial intelligence
while only focusing on pattern recognition is like trying to invent the car while
only focusing on the wheels.

2.1 The Need for AI Benchmarks

In order to build a complete artificial intelligence we therefore need to build a
system that takes actions in some kind of environment. How can we do this?
Perhaps the most obvious idea is to embody artificial intelligence in robots.
And indeed, robotics has shown us how even the most mundane tasks, such as
walking in terrain or grabbing strangely shaped objects, are really rather hard to
accomplish for robots [7]. In the eighties, robotics research largely refocused on
these kind of”simple” problems, which led to progress in applications as well as
a better understanding of what intelligence is all about [8]. The last few decades
of progress in robotics has fed into the development of self-driving cars, which is
likely to become one of the areas where AI technology will revolutionize society
in the near future.

Now, working with robots clearly has its downsides. Robots are expensive,
complex and slow. When I started my PhD, my plan was to build robot software
that would learn evolutionarily from its mistakes in order to develop increasingly
complex and general intelligence—this undertaking generally goes by the name
“evolutionary robotics” [9]. But I soon realized that in order for my robots to
learn from their experiences, they would have to attempt each task thousands
of times, with each attempt maybe taking a few minutes. This meant that even
a simple experiment would take several days - even if the robot would not break
down (it usually would) or start behaving differently as the batteries depleted or
motors warmed up. In order to learn any more complex intelligence I would have
to build an excessively complex (and expensive) robot with advanced sensors
and actuators, further increasing the risk of breakdown. I also would have to
develop some very complex environments where complex skills could be learned.
This all adds up, and quickly becomes unmanageable. Problems such as these is
why the field of evolutionary robotics has not scaled up to evolve more complex
intelligence.

I was too ambitious and impatient for that. I wanted to create complex
intelligence that could learn from experience. So I turned to video games.
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2.2 Games as AI Benchmarks

Games and artificial intelligence have a long history together. Even since before
artificial intelligence was recognized as a field, early pioneers of computer science
wrote game-playing programs because they wanted to test whether computers
could solve tasks that seemed to require “intelligence”. Alan Turing, arguably the
principal inventor of computer science, (re)invented the Minimax algorithm and
used it to play Chess [10]. (As no computer had been built yet, he performed the
calculations himself using pen and paper.) Chess was for a long time one of the
most important AI benchmarks [11]. Arthur Samuel was the first to invent the
form of machine learning that is now called reinforcement learning; he used it in a
program that learned to play Checkers by playing against itself [12]. Much later,
IBM’s Deep Blue computer famously won against the reigning grandmaster of
Chess, Gary Kasparov, in a much-publicized 1997 event [13,14]. Currently, many
researchers around the world work on developing better software for playing the
board game Go; up until recently, the best software is still no match for good
human players [15,16]. Between the first and the second revision of this chapter,
Google DeepMind (Google’s primary AI research division) announced in Nature
that their AlphaGo Go-playing program had beaten the European champion at
this game [17].

Classic board game such as Chess, Checkers and Go are nice and easy to work
with as they are very simple to model in code and can be simulated extremely
fast - you could easily make millions of moves per second on a modern computer -
which is indispensable for many AI techniques. Also, they seem to require think-
ing to play well. Many classib both depth and accessibility, meaning that they
take “a minute to learn, but a lifetime to master”. It is indeed the case that
games have a lot to do with learning, and good games are able to constantly
teach us more about how to play them. Indeed, to some extent the fun in playing
a game consists in learning them and when there is nothing more to learn we
largely stop enjoying them. This suggests that better-designed games are also
better benchmarks for artificial intelligence. However, judging from the fact that
now have (relatively simple) computer programs that can play Chess better than
any human, it is clear that you don’t need to be truly, generally intelligent to
play such games well. When you think about it, they exercise only a very narrow
range of human thinking skills; it’s all about turn-based movements on a discrete
grid of a few pieces with very well-defined, deterministic behavior.

But, despite what your grandfather might want you to believe, there’s more to
games than classical board games. In addition to all kinds of modern boundary-
pushing board games, card games and role-playing games, there’s also video
games. Video games owe their massive popularity at least partly to that they
engage multiple senses and multiple cognitive skills. Take a game such as Super
Mario Bros. It requires you not only to have quick reactions, visual understand-
ing and motoric coordination, but also to plan a path through the level, decide
about tradeoffs between various path options (which include different risks and
rewards), predict the future position and state of enemies and other characters
of the level, predict the physics of your own running and jumping, and balance
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the demands of limited time to finish the level with multiple goals. Other games
introduce demands of handling incomplete information (e.g. StarCraft), under-
standing narrative (e.g. Skyrim), or very long-term planning (e.g. Civilization).

On top of this, video games run inside controllable environments in a com-
puter and many (though not all) video games can be sped up to many times
the original speed. It is simple and cheap to get started, and experiments can be
run many thousands of times in quick succession, allowing the use of learning
algorithms.

So it is not surprising that AI researchers are increasingly turning to video
games as benchmarks. Researchers such as myself have adapted a number of
video games to function as AI benchmarks. To make it easier to participate in
this field and to provide common challenges for researchers to work on, we have
organized competitions where researchers can submit their best game-playing
AIs and test them against the best that other researchers can produce. Hav-
ing recurring competitions based on the same game allows competitors to refine
their approaches and methods, hoping to win next year. Games for which we
have run such competitions include Super Mario Bros [18,19], StarCraft [20],
the TORCS racing game [21], Ms. Pac-Man [22], a generic Street Fighter -style
fighting game [23], Angry Birds [24] and several others. In most of these com-
petitions, we have seen performance of the winning AI player improve every
time the competition is run. These competitions play an important role in cat-
alyzing research in the community, and every year many papers are published
where the competition software is used for benchmarking some new AI method.
There are by now a set of best practices for how to organize such competition
so as to maximize research value [25]. Thus, we advance AI through game-based
competitions.

2.3 Artificial General Intelligence and General Game Playing

There’s a problem with the picture I just painted. Can you spot it?
That’s right. Game specificity. The problem is that improving how well an

artificial intelligence plays a particular game is not necessarily helping us improve
artificial intelligence in general. It’s true that in most of the game-based compe-
titions mentioned above we have seen the submitted AIs get better every time
the competition ran. But in most cases, the improvements were not because of
better AI algorithms, but because of even more ingenious ways of using these
algorithms for the particular problems. Sometimes this meant relegating the AI
to a more peripheral role. For example, in the car racing competition the first
years were dominated by AIs that used evolutionary algorithms to train a neural
network to keep the car on the track. In later years, most of the best submissions
used hand-crafted “dumb” methods to keep the car on the track, but used learn-
ing algorithms to learn the shape of the track to adapt the driving [21]. This is a
clever solution to a very specific engineering problem but says very little about
intelligence in general.

In order to make sure that what such a competition measures is anything
approaching actual intelligence, we need to recast the problem. To do this,
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it’s a great idea to define what it is we want to measure: general intelligence.
Shane Legg and Marcus Hutter have proposed a very useful definition of intel-
ligence, which is roughly the average performance of an agent on all possible
problems [26]. (In their original formulation, each problem’s contribution to the
average is weighed by its simplicity, but let’s disregard that for now.) Obviously,
testing an AI on all possible problems is not an option, as there are infinitely
many problems. But maybe we could test our AI on just a sizable number of
diverse problems? For example on a number of different video games [27]?

The first thing that comes to mind here is to just to take a bunch of exist-
ing games for some game console, preferably one that could be easily emulated
and sped up to many times real time speed, and build an AI benchmark on
them. This is what the Arcade Learning Environment (ALE) does [28]. ALE
lets you test your AI on more than a hundred games released for 70 s vintage
Atari 2600 console. The AI agents get feeds of the screen at pixel level, and
have to respond with a joystick command. ALE has been used in a number of
experiments, including those by the original developers of the framework. Per-
haps most famously, Google Deep Mind published a paper in Nature last year
showing how they could learn to play several of the games with superhuman skill
using deep learning (Q-learning on a deep convolutional network) [29].

ALE is an excellent AI benchmark, but has a key limitation. The problem
with using Atari 2600 games is that there is only a finite number of them, and
developing new games is a tricky process. The Atari 2600 is notoriously hard to
program, and the hardware limitations of the console tightly constrain what sort
of games can be implemented. More importantly, all of the existing games are
known and available to everyone. This makes it possible to tune your AI to each
particular game. Not only to train your AI for each game (DeepMind’s results
depend on playing each individual game millions of times to train on it) but to
tune your whole system to work better on the games you know you will train on.

Can we do better than this? Yes we can! If we want to approximate testing
our AI on all possible problems, the best we can do is to test it on a number of
unseen problems. That is, the designer of the AI should not know which problems
it is being tested on before the test. At least, this was our reasoning when we
designed the General Video Game Playing Competition.

2.4 General Video Game Playing

The General Video Game Playing Competition (GVGAI) allows anyone to sub-
mit their best AI players to a special server, which will then use them to play ten
games that no-one (except the competition organizers) have seen before [30,31].
These games are of the type that you could find on home computers or in arcades
in the early eighties; some of them are based on existing games such as Boulder
Dash, Pac-Man, Space Invaders, Sokoban and Missile Command. The winner of
the competition is the AI that plays these unseen games best. Therefore, it is
impossible for the creator of the AI to tune their software to any particular game.
Around 60 games are currently available for training your AI on and 20 unseen
games are available to test on; every iteration of the competition increases this
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number as the testing games from the previous iteration become available to
train on, and new testing games are created.

Now, 60 games is not such a large number; where do we get new games from?
To start with, all the games are programmed in something called the Video Game
Description Language (VGDL) [32,33]. This is a simple language we designed
to be able to write games in a compact and human-readable way, a bit like how
HTML is used to write web pages. The language is designed explicitly to be able
to encode classical arcade games; this means that the games are all based on
the movement of and interaction between sprites in two dimensions. This is how
essentially all video games were designed before Wolfenstein 3D, and quite a few
games are still designed that way. In any case, the simplicity of this language
makes it very easy to write new games, either from scratch or as variations on
existing games. (Incidentally, as an offshoot of this project we are exploring the
use of VGDL in a prototyping tool for game developers.)

2.5 General Video Game Generation

Even if it’s simple to write new games, that doesn’t solve the fundamental prob-
lem that someone has to write them, and design them first. For the GVG-AI
competition to reach its full potential as a test of general AI, we need an endless
supply of new games. For this, we need to generate them. We need software that
can produce new games at the press of a button, and these need to be good
games that are not only playable but also require genuine skill to win. (As a side
effect, such games are likely to be enjoyable for humans.)

I know, designing software that can design complete new games (that are
also good in some sense) sounds quite hard. And it is. However, I and a couple
of others have been working on this problem on and off for a couple of years,
and I’m firmly convinced it is doable. Cameron Browne has already managed to
build a complete generator for playable (and enjoyable) board games [34], and
several people including myself have attempted to automatically generate video
games using different methods [35–38], or just generating interesting variations
of existing video games [39]. Some of our recent work has focused on generating
simple VGDL games, and though we’ve had some success there is much left to
do [40,41]. Also, it is clearly possible to generate parts of games, such as game
levels; there has been plenty of research within the last five years on procedural
content generation - the automatic generation of game content [42]. Researchers
have demonstrated that methods such as evolutionary algorithms, planning and
answer set programming can automatically create levels, maps, stories, items
and geometry, and basically any other content type for games [43,44]. Now, the
research challenges are to make these methods general (so that they work for
all games, not just for a particular game) and more comprehensive, so that they
can generate all aspects of a game including the rules. Most of the generative
methods include some form of simulation of the games that are being generated,
suggesting that the problems of game playing and game generation are intricately
connected and should be considered together whenever possible.
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Once we have extended the General Video Game Playing Competition with
automated game generation, we have a much better way of testing generic game-
playing ability than we have ever had before. The software can of course also
be used outside of the competition, providing a way to easily test the general
intelligence of game-playing AI.

2.6 What Kind of AI Will We Need?

So far we have only talked about how to best test or evaluate the general intel-
ligence of a computer program, not how to best create one. Well, this post is
about why video games are essential for inventing AI, and I think that I have
explained that pretty well: they can be used to fairly and accurately benchmark
AI. But for completeness, let us consider which are the most promising methods
for creating AIs of this kind. As mentioned above, (deep) neural networks have
recently attracted lots of attention because of some spectacular results in pattern
recognition. I believe neural networks and similar pattern recognition methods
will have an important role to play for evaluating game states and suggesting
actions in various game states. In many cases, evolutionary algorithms are more
suitable than gradient-based methods when training neural networks for games.

But intelligence can not only be pattern recognition. (This is for the same
reason that behaviorism is not a complete account of human behavior: peo-
ple don’t just map stimuli to responses, sometimes they also think.) Intelligence
must also incorporate some aspect of planning, where future sequences of actions
can be played out in simulation before deciding what to do. Recently an algo-
rithm called Monte Carlo Tree Search, which simulates the consequences of long
sequences of actions by doing statistics of random actions, has worked wonders
on the board game Go [45]. It has also done very well on GVGAI. Another fam-
ily of algorithms that has recently shown great promise on game planning tasks
is rolling horizon evolution [46]. Here, evolutionary algorithms are used not for
long-term learning, but for short-term action planning.

I think the next wave of advances in general video game-playing AIs will come
from ingenious combinations of neural networks, evolution and tree search. (Case
in point: Google’s recent success on the game of Go stemmed from a combination
of Monte Carlo Tree Search and two different types of neural networks [17].) And
from algorithms inspired by these methods. The important thing is that both
pattern recognition and planning will be necessary in various different capacities.
Of course, we cannot predict what will work well in the future (otherwise it
wouldn’t be called research), but I bet that exploring various combinations of
these method will inspire the invention of the next generation of AI algorithms.

2.7 The Even Bigger Picture

Now, you might object that this is a very limited view of intelligence and AI.
What about text recognition, listening comprehension, storytelling, bodily coor-
dination, irony and romance? Our game-playing AIs can’t do any of this, no
matter if it can play all the arcade games in the world perfectly. To this I say:
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Patience! One day. None of these things are required for playing early arcade
games, that is true. But as we master these games and move on to include other
genres of games in our benchmark, such as role-playing games, adventure games,
simulation games and social network games, many of these skills will be required
to play well. As we gradually increase the diversity of games we include in our
benchmark, we will also gradually increase the breadth of cognitive skills neces-
sary to play well. Of course, our game-playing AIs will have to get more advanced
to cope. Understanding language, images, stories, facial expression and humor
will be necessary. And don’t forget that closely coupled with the challenge of
general video game playing is the challenge of general video game generation,
where plenty of other types of intelligence will be necessary. I am convinced that
video games (in general) challenges all forms of intelligence except perhaps those
closely related to bodily movement, and therefore that video games (in general)
are the best testbed for artificial intelligence. An AI that can play almost any
video game and create a wide variety of video games is, by any reasonable stan-
dard, intelligent.

“But why, then, are not most AI researchers working on general video game
playing and generation?”

To this I say: Patience! One day.
This argument has become rather long and winding. Let me sum it up in a

handy paragraph, so you remember what this was all about:
It is crucial for artificial intelligence research to have good testbeds. Games

are excellent AI testbeds because they pose a wide variety of challenges and
are highly engaging. But they are also simpler, cheaper and faster than robots,
permitting a lot of research that is not practically possible with robotics. Board
games have been used in AI research since the field started, but in the last decade
more and more researchers have moved to video games because they offer more
diverse and relevant challenges. (They are also more fun.) Competitions play a
big role in this. But putting too much effort into AI for a single game has limited
value for AI in general. Therefore we created the General Video Game Playing
Competition and its associated software framework. This is meant to be the most
complete game-based benchmark for general intelligence. AIs are evaluated on
playing not a single video game, but on multiple games which the AI designer
has not seen before. It is likely that the next breakthroughs in general video
game playing will come from a combination of neural networks, evolutionary
algorithms and Monte Carlo Tree Search. Coupled with the challenge of playing
these games is the challenge of generating new games and new game content.
The plan is to have an infinite supply of games to test AIs on. While playing
and generating simple arcade games tests a large variety of cognitive capacities -
more diverse than any other AI benchmark - we are not yet at the stage where
we test all of intelligence. But there is no reason to think we would not get there,
given the wide variety of intelligence that is needed to play and design modern
video games.

It is now time to turn the perspective around a full radian, and ask not what
video games can do for AI, but what AI can do for video games.
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3 What AI Can Do for Video Games

Let’s start in the here and now. The phrase “game AI” is usually understood
as the artificial intelligence you find inside a video game, for example for con-
trolling various non-player characters (NPCs). But is there really any AI in a
typical video game? Depends on what you mean. The kind of AI that goes
into most video games deals with pathfinding and expressing behaviors that
were designed by human designers. The sort of AI that we work on in univer-
sity research labs is often trying to achieve more ambitious goals, and therefore
often not yet mature enough to use in an actual game. Alex Champandard, a
prominent developer/researcher at the interface between academic and game-
industrial AI, suggests that the “next giant leap of game AI is actually artificial
intelligence” [47]. And there’s indeed lots of things we could do in games if we
only had the AI techniques to do it.

So let’s step into the future, and assume that many of the various AI tech-
niques we are working on at the moment have reached perfection, and we could
make games that use them. In other words, let’s imagine what games would be
like if we had good enough AI for anything we wanted to do with AI in games.
Imagine that you are playing a game of the future.

You are playing an “open world” game, something like Grand Theft Auto
V or Skyrim. Instead of going straight to the next mission objective in the city
you are in, you decide to drive (or ride) five hours in some randomly chosen
direction. The game makes up the landscape as you go along, and you end up in
a new city that no human player has visited before. In this city, you can enter
any house (though you might have to pick a few locks), talk to everyone you
meet, and involve yourself in a completely new set of intrigues and carry out
new missions. If you would have gone in a different direction, you would have
reached a different city with different architecture, different people and different
missions. Or a huge forest with realistic animals and eremites, or a secret research
lab, or whatever the game comes up with.

Talking to these people you find in the new city is as easy as just talking to the
screen. The characters respond to you in natural language that takes into account
what you just said. These lines are not read by an actor but generated in real-time
by the game. You could also communicate with the game though waving your
hands around, dancing or using other exotic modalities for expressing emotions
and intentions. Of course, in many (most?) cases you are still pushing buttons
on a keyboard or controller, as that is often the most efficient way of telling the
game what you want to do.

Perhaps needless to say, but all the non-player characters (NPCs) navigate
and generally behave in a thoroughly believable way. For example, they will
not get stuck running into walls or repeat the same sentence over and over
(well, not more than an ordinary human would). This also means that you have
interesting adversaries and collaborators to play any game with, without having
to resort either to waiting for your friends to come online or to being matched
with annoying thirteen year-olds.
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Within the open world game, there are other games to play, for example by
accessing virtual game consoles within the game or proposing to play a game
with some NPC. These NPCs are capable of playing the various sub-games at
whatever level of proficiency that fits with the game fiction, and they play with
human-like playing styles. It is also possible to play the core game at different
resolutions, for example as a management game or as a game involving the con-
trol of individual body parts, by zooming in or out. Whatever rules, mechanics
and content are necessary to play these sub-games or derived games are invented
by the game engine on the spot. Any of these games can be lifted out of the main
game and played on its own.

The game senses how you feel while playing the game, and figures out which
aspects of it you are good at as well as which parts you like (and conversely,
which parts you suck at and despise). Based on this, the game constantly adapts
itself to be more to your liking, for example by giving you more story, challenges
and experiences that you will like in that new city which you reached by driving
five hours in a randomly chosen direction. Or perhaps by changing its own rules.
It’s not just that the game is giving you more of what you already liked and
mastered. Rather more sophisticatedly, the game models what you preferred
in the past, and creates new content that answers to your evolving skills and
preferences as you keep playing.

Although the game you are playing is endless, of infinite resolution and con-
tinuously adapts to your changing tastes and capabilities, you might still want
to play something else at some point. So why not design and make your own
game? Maybe because it’s hard and requires lots of work? Sure, it’s true that
back in 2016 it required hundreds of people working for years to make a high
profile game, and it required at least a handful of highly skilled professionals to
make any notable game at all, even if small. But now that it’s the future and
we have advanced AI, this can be used not only inside of the game but also in
the game design and development and process. So you simply switch the game
engine to edit mode and start sketching a game idea. A bit of a storyline here,
a character there, some mechanics over here and a set piece on top of it. The
game engine immediately fills in the missing parts and provides you with a com-
plete, playable game. Some of it is suggestions: if you have sketched an in-game
economy but have no money sink, the game engine will suggest one for you,
and if you have designed gaps that the player character can not jump over, the
game engine will suggest changes to the gaps or to the jump mechanic. You can
continue sketching, and the game engine will convert your sketches into details,
or jump right in and start modifying the details of the game; whatever you do,
the game engine will work with you to flesh out your ideas into a complete game
with art, levels and characters. At any time you can jump in and play the game
yourself, and you can also watch a number of artificial players play various parts
of the game, including players that play like you would have played the game or
like your friends (with different tastes and skills) would have played it.

If you ask me, I’d say that this is a rather enticing vision of the future. I’ll
certainly play a lot of games if this is what games will look like in a decade or so.
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But will they? Will we have the AI techniques to make all this possible? Well,
me and a bunch of other people in the CI/AI in Games research community are
certainly working on it. (Whether that means that progress is more or less likely
to happen is another question...) My team and I are in some form working on
all of the things discussed above, except the natural interaction parts (talking
to the game etc.).

Let’s start with the goal of generating complete games [36,41,48,49]. This
requires generating a large number of different aspects of the game, includ-
ing levels, rules, items, quests, textures etc. The generation of various types of
game content is commonly referred to as procedural content generation [42,50].
We work mainly within the search-based procedural content generation para-
digm [43], where evolutionary algorithms are used to generate content; often,
this takes the form of searching for game content that, according to a player
model, creates some particular type of player experience [51]. This of course
requires us to have models of player experience and player behavior [52–55], so
we can predict what players will do when faced with a particular type of game
content and how they will experience it. Given that we for the foreseeable future
will not be able to completely automate all parts of the game creation process
we need to find ways to involve humans inside the game and content genera-
tion process; we need mixed-initiative tools that combine the best of human and
machine creativity [56–59]. In order to assess the quality of games and game
content we need to be able to playtest them. Therefore we need strong AI capa-
ble of playing any game—which, not coincidentally, is what the first part of this
chapter focuses on. Once you have a strong game-playing AI, you might also need
to restrict it or otherwise modify it so that it plays the game in a human-like
manner; it is common that strong AI players play in a somewhat “machine-like
way” [60–62].

By now you probably see how it all fits together. In order to generate games
you need to generate various types of content, and in order to do that you need
good player models and good artificial players to play the games in a human-
like manners. But in order to develop good game-playing AI you need to test
your players on multiple games, and in order to do so you need to automatically
generate games and game content of high quality [63]. It’s like a web, where
every part is dependent on every other part. Games are essential to furthering
AI, but AI also has a lot to give games. This chapter has tried to explain some
of the various ways in which these research questions interact.

This chapter is also an invitation to you to start working within the field
of AI in games, and address some of its many fascinating questions. If you are
already an AI researcher, you should consider working on games. If you are a
researcher in a different field interested in games, consider taking the artificial
intelligence perspective on the research problems associated with games. There
is a lot of work to do, and you are welcome to join our research community.
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Abstract. Replicating loops represent a class of benchmarks, which is
commonly studied in relation with cellular automata. Most of the known
loops, for which replication rules exist in two-dimensional cellular space,
create the copies of themselves using a certain construction algorithm
that is common for all the emerging replicas. In such cases, the replication
starts from a single instance of the loop (represented as the initial state
of the cellular automaton) and is controlled by the transition function of
the automaton according to which the copies of the loop are developed.
Despite the fact that universal replicators in cellular automata are pos-
sible (for example, von Neumann’s Universal Constructor), the process
of replication of the loops is usually specific to the shape of the loop and
the replication rules given by the transition function. This work presents
a method for the automatic evolutionary design of cellular automata,
which allows us to design transition functions for various structures that
are able to replicate according to a given specification. It will be shown
that new replicating loops can be discovered that exhibit some uncon-
ventional features in comparison with the known solutions. In particular,
several scenarios will be presented which can, in addition to the repli-
cation from the initial loop, autonomously develop the given loop from
a seed, with the ability of the loop to subsequently produce its replicas
according to the given specification. Moreover, a parallel replicator will
be shown that is able to develop the replicas to several directions using
different replication algorithms.

Keywords: Genetic algorithm · Cellular automaton · Transition
function · Conditional rule · Replicating loop

1 Introduction

Since the introduction of cellular automata (CA) in [20], researchers have dealt,
among others, how to effectively design a cellular automaton (and its transition
function in particular) to solve various problems. For example, cellular automata
have been studied for their ability to perform computations, e.g. using principles
c© Springer International Publishing AG 2017
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from the famous Conway’s Game of Life [1] or by simulating elementary logic
functions in non-uniform cellular matrix [15].

One of the topics widely studied in the area of artificial life is the problem of
(self-)replicating loops. Since the introduction of probably the most known loop
by Langton [8], which is able to replicate in 151 steps in a CA working with 8
states, some other researchers have dealt with this topic trying to simplify the
replication process or enhance the abilities of the loop during replication. For
example, Byl introduced a smaller loop that is able to replicate in 25 steps using
a CA that works with 6 cell states [4]. Later, several unsheathed loops were pro-
posed by Reggia et al. from which the simplest loop consists of 6 cells only and
is able to replicate using 8-state CA in 14 steps [12]. On the other hand, Tem-
pesti studied a possibility to introduce construction capabilities into the loops
and proposed a 10-state CA that allows to generate patters inside the replicat-
ing structures [19]. Perrier et al. created a “self-reproducing universal computer”
using 64-state CA by “attaching” executable programs (Turing Machines) on the
loops [11]. Although the aforementioned solutions were achieved using analytic
methods, the process of determining suitable transition rules for a given problem
represents a difficult task and requires an experienced designer (the process of
“programming” the CA is not intuitive). As the number of cell states increases,
the process of the CA design becomes challenging due to a significant increase
of the solution space. Moreover, for some problems no analytic approach has yet
been known to the design of the transition rules. In such cases various uncon-
ventional techniques have been applied including Genetic Algorithm (GA) [7],
possibly in combination with other heuristics.

For example, Mitchell et al. investigated a problem of performing computa-
tions in cellular automata using GA [9]. Their work contains a comparison with
the original results obtained by Packard in [10] which can be considered as a
milestone in applying evolutionary algorithms (EA) to the design and optimisa-
tion of cellular automata. In particular, the authors in [9] claim: “Our experi-
ment produced quite different results, and we suggest that the interpretation of
the original results is not correct.” It may indicate that the research of cellular
automata (and their typical features like emergent behaviour or cooperative cell
signalling by means of local rules) using various computing techniques can pro-
vide valuable information for advanced studies and applications in this area. Note
that Mitchell et al. considered binary (i.e. 2-state) 1D cellular automata only
which represent a fundamental concept for advanced models. Sipper proposed a
technique called Cellular Programming (a spatially distributed and locally inter-
acting GA) that allows for the automatic design of non-uniform CA that are well
suited to various problems [16]. Sapin et al. introduced a GA-based approach to
the design of gliders and glider guns in 2D cellular automata [13,14]. It was shown
that a spontaneous emergence of glider guns in CA can occur with a significant
number of new gun-based and glider structures discovered by EA. The aim of
the glider research was to construct a system for collision-based computation-
ally universal cellular automata that are able to simulate Turing machines [14].
In recent years, several solutions emerged that aim to optimize the CA design
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by introducing various evolution-based and soft-computing techniques in com-
bination with suitable representations of the transition functions. For example,
Elmenreich et al. proposed an original technique for the calculation of the tran-
sition function using neural networks (NN) [5]. The goal was to train the NN
by means of Evolutionary Programming [6] in order to develop self-organising
structures in the CA. A novel technique for encoding the transition functions
of CA, called Conditionally Matching Rules, was introduced in [3], and some
applications in binary CA with advantages over the conventional (table-based)
encoding were presented in [2].

Whilst the most of the aforementioned studies considered binary CA (i.e.
those working with two cell states only), which may be suitable for straightfor-
ward hardware implementations (e.g. Sipper’s Firefly machine [17]), multi-state
CA can provide a more efficient way for the representation and processing of
information in CA thanks to the ability of individual cells to work with more
than two states. This feature is important for studying complex systems that
are in most cases described by integer (or real-valued) variables. In addition, the
introduction of more than two states per cell in the CA may allow to reduce the
resources needed to solve a given problem (e.g. the size of the cellular array or
dimension of the automaton). For example, Yunès studied computational uni-
versality in multi-state one-dimensional cellular automata [21]. A technique for
the construction of computing systems in 2D CA was demonstrated by Stefano
and Navarra in [18] using rules of a simple game called Scintillae working with
6 cell states. Their approach allows to design components (building blocks) for
the construction of bigger systems, e.g. on the basis of gate-level circuits.

The goal of this study is to demonstrate the evolutionary design of 2D cel-
lular automata, using the concept of conditionally matching rules to encode the
transition functions, which are able to replicate the given structures with respect
to a given arrangement in the cellular array. In particular, uniform, multi-state
cellular automata will be treated, the cells of which work with 8 and 10 states.
The GA will be applied in order to design suitable transition rules that perform
replication of the given structure according to the designer’s specification. It will
be shown that novel replication scenarios can be found in CA that can copy the
given loop not only from its initial instance but also, from a seed the loop can
autonomously grow. Moreover, a parallel replication scheme will be presented,
the objective of which is to speed-up the replication process by allowing the
structures to replicate to more directions in the 2D CA. The results will demon-
strate the ability of the GA to discover different replication scenarios for the
replicas developing in parallel in the cellular automaton, which will be encoded
in a single evolved transition function.

2 Cellular Automata

The original concept of cellular automaton, introduced in [20], which will be
considered in this study, assumes a 2D matrix of cells, each of which at a given
moment acquires a state from a finite set of states. The development of the CA



24 M. Bidlo

is performed synchronously in discrete iterations (time steps) by updating the
cell states according to local transition functions of the cells. Uniform cellular
automata will be investigated in which the local transition function is identical
for all cells and hence it can be considered as a transition function of the CA. The
next state of each cell depends on the combination of states in its neighbourhood.
In this work, von Neumann neighbourhood will be assumed that includes a given
(Central) cell to be updated and its immediate neighbours in the North, South,
East and West direction (i.e. it is a case of a 5-cell neighbourhood).

Since the CA behaviour can practically be evaluated in the cellular array
of a finite size, boundary conditions need to be specified in order to correctly
determine cell states at the edge of the array. Cyclic boundary conditions will
be implemented which means that cells at an edge of the CA are “connected”
to the appropriate cells on the opposite edge (i.e. these cells are considered as
neighbours) in each dimension. In case of the 2D CA the shape of such cellular
array can be viewed as a toroid.

The transition function is usually defined as a mapping that for all possible
combinations of states in the cellular neighbourhood determines a new state. This
mapping can be represented as a set of rules of the form Nt Wt Ct Et St → Ct+1

where Nt,Wt, Ct, Et and St denote cell states in the defined neighbourhood at
a time t and Ct+1 is the new state of the cell to be updated. It means that for
every possible combination of states Nt Wt Ct Et St a new state Ct+1 needs to be
specified. However, if the number of cell states increases, the number of possible
transition rules grows significantly which is inconvenient for efficient CA design.
Of course, not all transition rules need to be specified explicitly but the problem
is how to choose the rules which modify the central cell in the neighbourhood.
Therefore, an advanced representation of the transition rules was proposed and
denominated as Conditionally Matching Rules [3]. Conditionally matching rules
allows us to reduce the size of representation of the transition functions especially
with respect to the evolutionary design of cellular automata.

3 Conditionally Matching Rules

The concept of conditionally matching rules (CMR) showed as a very promising
technique in comparison with the conventional (table-based) approach consider-
ing various experiments with binary cellular automata (e.g. pattern development
task [3] or binary multiplication in 2D CA [2]). In this work, evolutionary design
of the CMR-based representation will be investigated in order to design cellular
automata with up to 10 cell states that support replication of a given structure.

A conditionally matching rule represents a generalised rule of a transition
function for determining a new cell state. Whilst the common approach specifies
a new state for every given combination of states in the cellular neighbourhood,
the CMR-based approach allows to encode a wider range of combinations into a
single rule. A CMR is composed of two parts: a condition part and a new state.
The number of items (size) of the condition part corresponds to the number of
cells in the cellular neighbourhood. Let us define a condition item as an ordered
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pair consisting of a condition function and a state value. The condition function
is typically expressed as a function whose result can be interpreted as either true
or false. The condition function evaluates the state value in the condition item
with respect to the state of the appropriate cell in the cellular neighbourhood.
In particular, each item of the condition part is associated with a cell in the
neighbourhood with respect to which the condition is evaluated. If the result of
such evaluation is true, then the condition item is said to match with the state
of the appropriate cell in the neighbourhood. In order to determine a new cell
state according to a given CMR, all its condition items must match (in such case
the CMR is said to match).

The following condition functions will be considered: == 0, �= 0,≤,≥. Note
that this condition set represents a result of our long-term experimentation and
experience with the CMR approach and will be used for all the experiments
in this study. The condition == 0, respective �= 0, evaluates whether the cor-
responding cell state is equal to 0 (i.e. a “dead” state), respective whether it
is different from state 0. Note that the state value of the condition item for
== 0 and �= 0 is considered implicitly within the condition itself. The conditions
≤ and ≥ represent relational operators “less or equal” and “greater or equal”
respectively for which the state value of the condition item must be explicitly
specified.

Figure 1 shows an example of conditionally matching rules defined for a 2D
CA with the 5-cell neighbourhood together with the illustration of cells the con-
dition items are related to. CMR (A) is a matching CMR since all the conditions
of its condition part are evaluated as true with respect to the sample neighbour-
hood shown in the left part of Fig. 1. On the other hand, CMR (B) does not
match because the second condition item ! = 2 evaluates as false with respect to
the west cell that possesses state 2. Similarly, the third condition == 0 of CMR
(B) is not true as the central cell is in state 2.

A CMR-based transition function can be specified as a finite (ordered)
sequence of conditionally matching rules. The following algorithm will be applied
to determine a new state of a cell. The CMRs are evaluated sequentially one by
one. The first matching CMR in the sequence is used to determine the new
state. If no of the CMRs matches, then the cell keeps its current state. These
conventions for evaluating and applying the CMRs ensure that the process of cal-
culating the new state is deterministic (it is assumed that the condition functions
are deterministic too). Therefore, it is possible to convert the CMR-based tran-
sition function to a corresponding table-based representation which preserves
the fundamental concept of cellular automata. Moreover, every condition set
that includes relation == allows to formulate transition rules for specific com-
binations of states if needed (by specifying == for all condition items of the
CMR).

In order to obtain the conventional (table-based) representation of the tran-
sition rules from an evolved CMR-based solution, the following algorithm is
applied using the same CA that was considered during evolution. Let Ct and
Ct+1 denote states of a cell in two successive steps of the CA at time t and t+1
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Fig. 1. Example of a conditionally matching rule specified for 5-cell neighbourhood.
The value of the new state is written in bold. (A) example of a matching CMR,
(B) example of a CMR that does not match – the second and third condition is eval-
uated as false.

Fig. 2. Structure of a chromosome for genetic algorithm encoding a CMR-based tran-
sition function. cx denote a condition for the cell at position x in the neighbourhood,
sx represents the state value to be investigated using the appropriate condition with
respect to the state of cell at position x, ns specifies the next state for a given CMR.
All the conditions and state values are represented by integer numbers.

respectively. A transition rule of the form Nt Wt Ct Et St → Ct+1 is generated
for the combination of states in the cellular neighbourhood if Ct �= Ct+1. This
process is performed after each step and for each cell until the CA reaches a
stable or periodic state. The set of rules obtained from this process represents
the corresponding conventional prescription of the transition function. Note that
only the rules that modify the cell state are generated, all the other rules are
implicitly considered to preserve the current state.

4 Evolutionary System Setup

A genetic algorithm is utilized for the evolution of CMR-based transition func-
tions in order to achieve the given behaviour in cellular automata. Each chro-
mosome of the GA represents a candidate transition function encoded as a finite
sequence of CMRs. The chromosome is implemented as a vector of integers in
which the condition items and next states of the CMRs are encoded. Note that
the population consists of chromosomes of a uniform length (given by the num-
ber of CMRs) which is specified as a parameter for a specific experiment. The
structure of a chromosome is depicted in Fig. 2.
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The population of the GA consists of 8 chromosomes that are initialised ran-
domly at the beginning of the evolutionary process. In each generation, four
individuals are selected randomly from the current population, the best one of
which is considered as a parent. In order to generate an offspring, the parent
undergoes a process of mutation as follows. A random integer M in range from
0 to 2 is generated. Then M random positions in the parent chromosome are
selected. The offspring is created by replacing the original integers at these posi-
tions by new valid randomly generated values. If M equals 0, then no mutation
is performed and the offspring is identical to the parent. The process of selection
and mutation is repeated until the entire new population is created. Crossover
is not applied because no benefit of this operator was observed during the initial
experiments. Note that the same GA has successfully been applied since the
introduction of CMRs in various case studies [2,3]. Although no optimal (evolu-
tionary) approach has yet been known for uniform CA, our experiments indicate
that small-population EA (i.e. less than 10 individuals) with a simple mutation
operator may represent a suitable class of algorithms to obtain working solutions
with a reasonable success rate and computational effort. However, the detailed
analysis and wider comparison of different techniques is not a subject of this
study.

For each experiment, the GA is executed for 3 million generations. If no
correct solution is found within this limit, the evolution is terminated. The eval-
uation of the chromosomes (i.e. the fitness function) and details regarding various
experimental settings are described in the next section.

5 Experimental Results

This section summarises statistics of the evolutionary experiments performed
and presents some results together with a more detailed analysis. Two sets of
experiments are considered, the goal of each is to design CA that is able to
replicate the given loop. The first set works with a big loop (the denomination is
chosen for the purposes of this work with respect to the loop in the second set of
experiments), the objective is to design transition rules that are able to develop
a single replica of the loop in a given arrangement against the initial loop. In the
second set, a simpler, small loop is treated, the goal is to find replication rules
for the development of two independent replicas in parallel on the left and right
side of the initial loop. Note that the loops consist of cells in 7 different states
(including state 0). In both sets of experiments, the CA working with 8 and 10
cell states are investigated. Moreover, different numbers of CMRs (varying from
20 to 50) encoded in the GA chromosomes are considered. For each setup, 100
independent evolutionary runs are executed. The experiments were executed
using the Anselm cluster1, the time of a single run (3 million generations) is
approximately 12 h.

1 https://docs.it4i.cz/anselm-cluster-documentation/hardware-overview.

https://docs.it4i.cz/anselm-cluster-documentation/hardware-overview
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5.1 Replication Evolution of the Big Loop

A big loop is considered for the replication in the first set of experiments, the
structure of which is shown in Fig. 3a. The genetic algorithm is applied to design
the transition rules for the CA, which perform the replication of the loop in
a maximum of 30 steps. The required CA state, that contains the replica, is
depicted in Fig. 3b. The following algorithm is applied to the evaluation of the
candidate solutions during evolution and the calculation of the fitness function.
A partial fitness function is evaluated after each CA step as the number of
cells in correct states with respect to Fig. 3b. The final fitness value of a given
candidate solution is defined as the maximum of the partial fitness values. It
this case the replication can be considered as a pattern transformation problem
from a single (initial) loop onto two loops in a given arrangement. However,
the loop is expected to replicate again and again during the subsequent CA
development, which will be validated for the results obtained from the evolution.
Moreover, an assumption is considered that each newly created loop is shifted by
two cells down with respect to its predecessor (as shown in Fig. 3b). Therefore,
the solutions obtained are further investigated using a visual software simulator
developed by the author of this work in order to check that. The goal of this
approach is to determine whether the GA is able to discover various new general
replication scenarios. Note that, for the purposes of this study, the term “general”
means the ability of a solution to repeatedly produce more replicas of the given
loop, not an ability to replicate arbitrary loops.

Table 1 summarises the results of experiments with the big loop and provides
an overview of some basic parameters of the CA that can be observed during its
development using the evolved transition functions. As evident, the maximum
success rate achieved during the experiments is only 12 % which is not very high.
Note, however, that the replication of the proposed loop represents a problem
for which no working solution was found during our previous experiments using
the table-based transition functions.

Fig. 3. The structure of the big loop in the cellular automaton that was evaluated
during evolution: (a) the initial CA state containing the loop to be replicated, (b) the
target state specifying the replica arrangement.
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Table 1. Results of the evolutionary experiments considering the design of transition
functions for the replication of the loop from Fig. 3a. Success rate – the number of
successful experiments out of 100 independent experiments performed that has met
the fitness specification in a limit of 3 million generations, Replicates repeatedly –
the number of results from the successful experiments that are able to produce more
replicas during the subsequent CA development, Min. steps – the minimal number of
steps of the CA needed to create the replica (i.e. the lowest value of this parameter
from the group of “Replicates repeatedly” solutions, Min. rules – the minimal number
of table-based transition rules obtained (i.e. the lowest value of this parameter from
the group of “Replicates repeatedly” solutions.

Num. of CMRs CA with 8 cell states CA with 10 cell states

Success rate Replicates Min. Min. Success Replicates Min. Min.

[%] repeatedly steps rules rate repeatedly steps rules

20 0 - - - 1 0 - -

30 10 6 19 84 12 9 21 146

40 9 4 20 139 12 6 16 186

50 10 6 18 130 12 6 21 177

In addition to the results obtained for the CA working with 8 cell states, some
successful solutions have even been obtained for 10 cell states which indicates
that the CMRs are an efficient encoding of the transition rules that allows for
the design of more complex multi-state CA. The solutions obtained in this work
demonstrate a wide range of various replication schemes that can be performed
using CA. For example, a solution was found that is able to replicate the loop
in 16 steps (the best result achieved for this loop) whilst some CA require 30
steps (the maximal allowed number of steps) in order to finish the replication.
Similarly, the number of transition rules generated from the CMRs varies from
84 to more than 1500 rules. These results indicate that cellular automata can
in some cases exhibit behaviour that has not yet been discovered which may be
beneficial not only for the area of CA but also, for the study of complex systems
in general.

Figure 4 shows a CA development performed by one of the successful transi-
tion functions obtained for the replication of the given loop. It is one of the best
solutions discovered in this work with respect to the number of steps needed to
create a copy of the loop. The transition function was found with 30 CMRs in
the GA chromosomes and the corresponding conventional representation con-
tains 238 transition rules. If the development of the initial loop is considered
(see the upper parts of each step in Fig. 4), the CA needs 21 steps to create
a complete replica. As shown by the last step, more replicas can be created
in the same way according to the original specification if the CA development
continues. However, a more detailed investigation of this result showed that the
complete initial loop is not strictly needed in order to successfully perform the
replication. For example, the loop is able to emerge even from a single seed – the
lower parts of each step presented in Fig. 4 shows a development of the loop from
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Fig. 4. Develpment of a CA performing replication of the loop from Fig. 3a. The
sequence of steps reads from left to right and top to bottom. The upper part of each
step of the CA illustrates the replication of the initial loop. The bottom part demon-
strates a seed represented by a cell in state 5. Note that after the loop is finished, its
replication continues in the same way as from the initial instance (shown by the last
CA state).

a single initial cell (a seed) in state 5. As marked by the up-most black arrow a
complete loop is developed from the seed after 18 steps which is by 3 steps faster
compared to the development from the initial loop. This behaviour is caused by
a need of the initial loop to generate a cell in state 5 (i.e. the same state as the
seed) from which the replica can be developed (it takes 3 steps – see the top-
right CA state in Fig. 4). The process of finishing the replica is identical with
the development from the seed. Note that the ability of the transition function
to develop and replicate the loop from a seed was not explicitly required in the
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Fig. 5. Transition function for the CA in Figs. 6 and 7: (a) the evolved representation
with 50 CMRs, (b) the corresponding conventional representation consisting of 130
rules. This result represents one of the best solutions discovered for the replication of
the big loop.

fitness evaluation. Hence it can be considered as an additional, unconventional
feature of this solution.

Another result is presented in the form of an evolved transition function
(Fig. 5) and the appropriate CA development (Figs. 6 and 7). This cellular
automaton demonstrates a development process from a seed that at first creates
rather a chaotic structure even larger than the required loop itself. A “mature”
loop is developed from this structure during the subsequent CA development
that is able to replicate itself. Whilst the replication of the initial loop takes
25 steps (marked by the black arrow in Fig. 6), the development of the chaotic
structure needs 36 steps. Starting by step 37 (Fig. 7) the loop is developed from
that structure in the same way as from the initial loop. It was verified that the
loops are able to replicate repeatedly if the CA development continues.

For both the presented solutions the transition function was identified as
redundant (i.e. not all the conventional transition rules generated from the CMR
representation are needed for the replication of the initial loop required by the fit-
ness function). A more detailed analysis showed that this redundancy is caused
by the finite CA size with cyclic boundary conditions and by generating the
transition rules from the CMRs until the CA reaches a stable or periodic state.
Although this approach leads to more complex table-based transition functions,
in this case it showed as very beneficial for achieving some additional features
that were not required during evolution (especially the ability to develop the
loops from a seed). Advanced experiments with the resulting CA showed that if
the transition functions are optimized (i.e. only the rules for the development of
a single replica from the initial loop are considered), the CA in most cases loose
the ability of the development from the seed. It was also determined that the
seed-based development does not work in case of the known replicating loops
(e.g. Langton’s or Byl’s loop). In the future, this ability may be beneficial for
the advanced study of complex systems in which a given (complex) configuration
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Fig. 6. Part 1 of the replication according to the transition function from Fig. 5. The
sequence of steps reads from left to right and top to bottom. The development shows
a replication of the initial loop (the upper part of each step) and a growth of a non-
specific structure from a seed allowing to create the loop autonomously (the lower part
of each step). The seed is represented by a cell in state 7.

needs to be achieved—distributed—from a single cell or a simple initial configu-
ration. In addition to the results presented herein, various other solutions were
found that are able to replicate a given structure. It indicates that the replica-
tion in CA is not limited to known schemes only but can be performed in many
different ways.
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Fig. 7. Part 2 of the replication according to the transition function from Fig. 5. The
sequence of steps reads from left to right and top to bottom. The development shows
an autonomous growth of the loop from a non-specific structure that emerged in the
last step of Fig. 6 (the bottom part of each step). It was verified that the loop is able to
replicate in the same way as the initial loop during the subsequent CA development.

5.2 Parallel Replication of the Small Loop

The second set of experiments presents the evolution of parallel replication tech-
niques of a small loop with its structure shown in Fig. 8a. As with the evolution
of the big loop, the CA behaviour is evaluated for 30 steps using the partial
fitness calculated after each step with respect to the target arrangement of the
replicas shown in Fig. 8b, and the final fitness value is given by the maximum of
the partial fitness values. In this case, however, two replicas are required with
the arrangement on the left and right side of the original loop. The hypothesis
evaluated herein is that if suitable transition functions exist for the development
of the replicas, then at least a subset of the results will produce the replicas
repeatedly in the given directions during the subsequent CA development (i.e.
for the purposes of this study, such the solutions will be considered as general).
Since the loop is not fully symmetric with respect to the cell states on the sides
of the loop, it is expected that different replication algorithms (i.e. sequences of
the CA steps) need to be designed to produce the replicas.

Table 2 summarises the results of experiments with the small loop and pro-
vides an overview of some basic parameters of the CA that can be observed
during its development using the evolved transition functions. Although the
shape of the small loop is simpler than the big loop, the requirement of two
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Fig. 8. The structure of the small loop in the cellular automaton that was evaluated
during evolution: (a) the initial CA state containing the loop to be replicated, (b) the
target state specifying the replicas arrangement, (c) example of a symmetric loop.

Table 2. Results of the evolutionary experiments considering the design of transition
functions for the replication of the loop from Fig. 8a. The success rate, the number of
general solutions, the minimal number of transition rules and the minimal number of
CA steps needed to create the replicas were evaluated.

Num. of CMRs CA with 8 cell states CA with 10 cell states

Success rate Replicates Min. Min. Success Replicates Min. Min.

[%] repeatedly steps rules rate repeatedly steps rules

20 0 - - - 2 0 - -

30 9 5 18 134 9 3 17 120

40 7 6 17 123 9 4 17 134

50 8 4 18 157 12 7 17 219

independent replicas increases the overall complexity of this task, the maximum
success rate achieved does not exceed 12 %. Despite this fact, the evolution pro-
vided some solutions that perfectly fulfil the target specification and, in addition,
also exhibit the capability of the seed-based development which was not explic-
itly required.

Figure 9 shows a CA that performs a successful parallel replication of the
small loop. The CA works with 8 cell states and, in addition to the replication
of the initial loop, is also able to perform the development and replication of
the loop from a seed. This is one of the most efficient and compact solution
obtained in this study regarding the number of CA steps and the number of
transition rules. The corresponding table-based transition function consists of
154 rules as shown in Fig. 10. The CA needs to perform 23 steps in order to
finish the replicas of the initial loop. However, if a cell is initialised as a seed
by one of the states 1, 3, 5, 6, or 7, the small loop autonomously grows into
its full shape and subsequently is able to replicate according to the original
specification. The analysis of the seed-based development showed that the loop
needs 19 steps to fully develop from state 1, 18 steps from states 3, 6 and 7,
and 24 steps from state 5. An interesting behaviour of the CA can be observed
after finishing the seed development when the loop ought to be replicated. In
particular, the loop replicates according to the given specification from states
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Fig. 9. A sequence of CA steps demonstrating the parallel replication of the small loop
according to the evolved transition function from Fig. 10. The states are ordered from
left to right and top to bottom. The bottom part of each state shows the replication
from the initial loop, the top part of each state demostrates the development and
replication of the loop from a seed.

1, 3, 6, and 7. However, the state-5 seed creates an undesirable structure that
prevents the loop replication to the left side, i.e. the loop developed from state
5 can replicate to the right side only (see Fig. 11). This indicates that a wide
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Fig. 10. A transition function designed by evolution for the parallel replication of the
small loop from Fig. 8a.

Fig. 11. A sample of the CA development from the seed according to the transition
function from Fig. 10: (a) the initial seed, (b) the small loop is developed from the seed
after step 24, leaving an undesirable structure on its left side, (c) the loop creates its
first replica after step 47, the undesirable structure prevents from the replication on
the left side, (d) the replication to the right in progress after step 51, the structure on
the left no longer changes.

range of states used as the seed allows emerging the loop using various processes
(i.e. sequences of CA states), which are totally different from the processes of
replication from the complete loop. Although the state-5 seed does not enable
to replicate the loop to both sides, the solution can be considered as robust
because the undesirable structure does not cause the destruction of the loop
that can subsequently replicate to the right side.

As an example of our research regarding the optimisation of replication tech-
niques in cellular automata, a symmetric loop is considered as shown in Fig. 8c.
Although the evaluation method applied to design the CA for this loop is out
of the scope of this study, a result of a successful parallel replication will be
presented, which demonstrates the potential of the GA in combination with
the CMR encoding to discover novel techniques in cellular automata. As in the
previous example, the goal of the experiment was to design transition rules for
the parallel replication of the loop to the given directions. Since the loop is
symmetric with respect to the arrangement of the cell states, it would be pos-
sible to adapt a single replication algorithm to perform the replication process
simultaneously to various directions. Such adaptation is based on “rotating” the
transition rules according to the ordering of cells in the cellular neighbourhoods
with respect to the given directions as known from Byl’s loop [4]. However, if the
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evaluation of the candidate solutions during evolution is performed with respect
to the number and arrangement of the replicas only, then the GA can discover
various independent replication algorithms as shown in Fig. 12. The correspond-
ing transition function contains 137 table-based rules and is shown in Fig. 13.
In this solution, not only the algorithms for the replication to the left and right
side differ significantly, the number of steps needed to create the replica on the
left side is nearly the double of the number of steps required for the replication
to the right side. As evident from Fig. 12, the first replica of the initial loop is
created on the right side after the 15th step, the first replica on the left side
needs 26 steps to be completed. After the 27th step, the second replica on the
right side is completed whilst the second copy on the left side has just started
to develop. Such a process has never been observed before as regards the known
replicating loops and hence it can be considered as an unconventional feature of
the solution obtained in this experiment.

Fig. 12. A sample of the parallel replication of the symmetric loop from Fig. 8c accord-
ing to the transition function shown in Fig. 13. Note that the number of steps needed
to develop a replica on the right side is half the number of steps required to finish a
replica on the left side.
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Fig. 13. The transition function designed by evolution for the parallel replication of
the symmetric loop from Fig. 8c.

5.3 Summary and Discussion

Both the proposed loops proved the ability to replicate according to the given
specification. It is worth to note that although the development of the loop from
a seed was not explicitly required, the evaluation of the results obtained for both
the loops showed that this ability is not rare. This means that the seed-based
development may be evolved directly (without any initial loop available) in order
the given loop can emerge autonomously. Some experiments were performed in
order to validate this hypothesis, with the following observations. The GA is able
to discover transition rules for the development of the given loop from the seed.
However, no solution has yet been achieved that would be able to subsequently
replicate the loop. One of the reasons for this issue may be the fact that the exact
place in the cellular space, where the loop is developed from the seed, is hard to
predict (it depends on the state of the seed, shape of the loop and the transition
rules). Therefore, it is not evident how the replicas ought to be specified within
the target CA state for the continuous replication. More research is needed in
order to determine the necessary information provided to the GA, which would
enable to solve this problem.

In order to perform a general evaluation of the results obtained within the
context of computational features of cellular automata and with respect to the
existing replicating loops, the following issues need to be clarified:

1. The objective was not to design self-replication. The loops with the ability
to self-replicate contain the information of how to create a copy encoded in
their “body” as a suitable arrangement of cell states. The transition rules
interpret this information and calculate the appropriate state transitions of
the CA in order to perform the replication process. In this work, however,
the initial loop is considered as an object of a given shape that ought to be
transformed onto a CA state that contains the copy of the loop. The goal was
to find both the transition rules and the sequence of the CA states that lead
to the emergence of the replica.
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2. The resulting CA do not represent universal computing models (it was not
a goal of the experiments). It means that a specific transition function, that
was obtained as a result of a successful evolution, is dedicated to replicate
the given loop only that was a subject of evaluation in the fitness function.
Nevertheless, as the results showed, some transition functions are able to
create the loops from a seed which was not explicitly required within the
fitness evaluation.

Although the shape of the proposed loops was inspired by the existing (self-
replicating) loops and the GA provided some successful results to replicate the
loops with respect to the given specifications, no working solution has yet been
achieved by the GA to replicate the existing loops (e.g. Byl’s loop) with the
exact shape and arrangement of the replicas. This issue can be caused by the
fact that some of the self-replicating loops are dynamical structures even after
the replica is finished (e.g. Byl’s loop exhibits such feature). However, only static
replicas were considered in our experiments. Another aspect may be the size
of the loop. Large loops require a considerable number of steps to finish the
replica (e.g. Langton’s loop needs 151 steps), which makes the evaluation of
such solutions very time-consuming. Finally, the information encoded in the
loop body, that specifies the self-replication features, actually determines the
replication algorithm (i.e. the CA development) which is specific for the given
loop. If no more valid replication algorithms exist in the solution space for a
given loop, then the GA may not be able to find the solution in a reasonable
time.

6 Conclusions

In summary, the results presented in this work shows several facts related to the
problem of replication in cellular automata. First, there are plenty of transition
functions that are able to replicate a given loop. The experiments showed that
it is possible to discover such functions routinely by means of the genetic algo-
rithm even for complex multi-state cellular automata (herein demonstrated for
CA working with 8 and 10 cell states). This was enabled by the utilisation of con-
ditionally matching rules as a technique for the representation of the transition
functions. Second, some unconventional features of the solutions were identified
that cannot be observed in the known replicating loops and have never been
published before. Specifically, in case of some solutions obtained, the CA can
be initialised by a single-cell seed in a non-zero state, which allows developing
the given loop that is subsequently able to replicate. Note that this ability was
identified as an extra feature of the resulting cellular automata, which was not
explicitly required by the specification for the evolutionary algorithm. This shows
that some cellular automata are able, using a minimum information encoded in
the initial state, to autonomously develop a complex emergent behaviour that
is fully determined by the transition function and the state of a single cell only.
Another feature, that was achieved by the evolution, is a parallel replication
of the given loop into more directions, using different algorithms to create the
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replicas. The results showed that this behaviour is needed if the arrangement of
the cell states in the loop is not fully symmetrical. However, an unconventional
parallel replication can be observed even in case of a symmetric loop, where the
difference is both in the way of the replication and the number of steps needed
to create the replicas. Again, the evolution itself discovered such the behaviour
just on the basis of the given target pattern containing the replicas of the initial
loop.

The results obtained bring some open questions, the answers of which could
be beneficial for the research of cellular automata in general. For example, can
the seed-based development create a configuration in the CA that supports self-
replication (or other useful features)? Are there other (simple) structures that
support development of more complex (self-)replicating objects? Can evolution-
ary techniques be applied to the design of computationally universal CA-based
models? Not only these questions represent ideas for our future work.
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Abstract. Model calibration represents the task of estimating the para-
meters of a process model to obtain a good match between observed and
simulated behaviours. This can be considered as an optimization problem
to search for model parameters that minimize the discrepancy between
the model outputs and the corresponding features from the historical
empirical data. This chapter investigates the use of Differential Evolution
(DE), a competitive class of evolutionary algorithms, to solve calibration
problems for nonlinear process models. The merits of DE include simple
and compact structure, easy implementation, as well as high convergence
speed. However, the good performance of DE relies on proper setting of
its running parameters such as scaling factor and crossover probability,
which are problem dependent and which can even vary in the different
stages of the search. To mitigate this issue, we propose a new adaptive
DE algorithm that dynamically adjusts its running parameters during
its execution. The core of this new algorithm is the incorporated greedy
local search, which is conducted in successive learning periods to contin-
uously locate better parameter assignments in the optimization process.
In case studies, we have applied our proposed adaptive DE algorithm
for model calibration in a Furnace Optimized Control System. The sta-
tistical analysis of experimental results demonstrate that the proposed
DE algorithm can support the creation of process models that are more
accurate than those produced by standard DE.

Keywords: Differential evolution · Optimization · Model identifica-
tion · Temperature estimation

1 Introduction

System modelling and identification provide an important basis for optimized
process control in modern industrial scenarios. Its main goal is to identify a
process model that is able to accurately predict the output of a system in
response to a set of inputs. Generally, a process model can be constructed in
two steps. In the first step, the structure of the model is determined in terms
c© Springer International Publishing AG 2017
J.J. Merelo et al. (eds.), Computational Intelligence, Studies in Computational Intelligence 669,
DOI 10.1007/978-3-319-48506-5 3
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of expert knowledge and insight into the process. The second step is model cal-
ibration that aims to estimate the parameters of the model to obtain a good
match between observed and simulated behaviours. This can be considered as
an optimization problem with the objective function being represented as the
deviation with respect to the historical empirical data. In other words, auto-
matic calibration is the process of searching for model parameters to minimize
the discrepancy between the model outputs and the corresponding features from
the empirical data.

Traditionally, the methods such as Least Mean Square (LMS) algorithm or
Recursive Least Square Estimation (RLS) algorithms have been used to solve
the model calibration problems. However, they are subject to two limitations.
First, they were developed for linear system identification, i.e. when the process
model is assumed to be linear. Second, they are essentially derivative-based
optimization techniques and may fail to find the optimal solution when locating
many (model) parameters in high dimensional spaces.

This paper advocates the application of Differential Evolution (DE) [1,2]
algorithms to solve the calibration problems for nonlinear process models. DE
presents a class of evolutionary computing techniques that perform population-
based and beam search, thereby exhibiting strong global search ability in com-
plex, non-linear and high dimensional spaces [3]. DE differs from many other
evolutionary algorithms [4,5] in that mutation in DE is based on differences
of individuals randomly selected from the population. Thus, the direction and
magnitude of the search is decided by the distribution of solutions instead of
a pre-specified probability density function. The merits of DE include simple
and compact structure, easy implementation, as well as high convergence speed,
which make it quite competitive in comparison with other evolutionary algo-
rithms.

However, the performance of DE is largely dependent on its two running para-
meters: scaling factor and crossover rate, in real applications. Improper setting
of such parameters will lead to low quality of solutions found by DE. Yet finding
suitable values for them is by no means a trivial task, it involves a trial-and-error
procedure that is time consuming.

In this paper we present a new adaptive algorithm for DE, which does not
require good parameter values (scaling factor and crossover rate) to be specified
by users in advance. Our new algorithm is established by integration of greedy
local search into the standard DE algorithm. Greedy search is conducted repeat-
edly during the running of DE to reach better parameter assignments in the
neighborhood. So far we have applied our adaptive DE algorithm for process
model calibration in a Furnace Optimized Control System (FOCS). The experi-
ment results revealed that our algorithm yielded process models that estimated
temperatures inside a furnace more precisely than those produced by using the
standard DE algorithm.

The remaining of the paper is organized as follows. Section 2 briefly describes
the application scenario. The standard DE algorithm is outlined in Sect. 3, which
is followed by the new adaptive DE algorithm in Sect. 4. Section 5 presents the
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results of experiments for model calibration in a Furnace Optimized Control
System. Section 6 discusses some relevant works. Finally, concluding remarks
are given in Sect. 7.

2 Problem Formulation

Energy consumption and environmental consideration are important issues to be
handled within the steel industry today. In this respect, inventing and developing
new ways to decrease fuel and emission levels in steel production and treating are
crucial to production economy. The FOCS system was developed for reheating
furnaces in the early 1980s, and has since grown to be the most commonly used
system in the Scandinavian steel industry, [6].

Due to the harsh environment inside the reheating furnace, the temperature
of the heated steel cannot be measured continuously. Therefore, the FOCS sys-
tem core is a temperature calculation model that utilizes temperature sensor
measurements in the walls inside the furnace as well as current fuel flow, to esti-
mate the temperature in the heated material. In order to gain optimal control
performance, it is crucial to estimate the temperatures accurately.

The temperature inside the material can be measured through the furnace
by a test measurement setup. This is normally done 2–3 times every year to
certify the furnace operation. The measurements are also used to calibrate the
FOCS temperature calculation model, by changing the model parameters to fit
the model output to the measurements. The calibration is performed manually
and can be a tedious task due to many parameters and evaluation of several test
measurements simultaneously.

We attempted to apply DE algorithms to facilitate automatic determina-
tion of the parameters of this process model. The goal is to find such a set of
parameters to minimize the error between the estimated temperatures from the
model and the actual temperatures obtained from the measurements. After the
execution of DE, we acquire the optimal parameters of the model, as shown in
Fig. 1. Subsequently this optimal model can be employed in future occasions to
produce reliable estimates of temperatures based on input conditions.

Fig. 1. DE, parameterized model, and temperature estimation.
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3 Differential Evolution

DE is a stochastic and meta-heuristic technique that has been developed for
solving optimization problems with real parameters [1]. It provides a powerful
tool for searching for optimal solutions in high-dimensional spaces that are non-
linear, non-differentiable, non-continuous, and containing multiple local optima.
DE has become a highly competitive class of evolutionary algorithms in many
practical applications.

A basic DE algorithm works with a population of NP vectors: Xi,G, i =
1, . . . NP , where i is the index of solutions in the population, G stands for the
generation and NP is the population size. A new generation of vectors is created
in DE by applying three operators: mutation, crossover, and selection, which will
be briefly introduced in the sequel.

Mutation is tasked to create a mutant vector for each target solution in
the population by using the vector of difference between the current population
members. Actually there are a number of variations to implement the mutation
operation. Here we only introduce the most commonly used mutation strategy,
which is notated as DE/rand/1. Other mutation strategies and their performance
are described in [7]. According to the strategy DE/rand/1, the mutant vector
Vi,G for target vector Xi,G is generated as follows

Vi,G = Xr1,G + F × (Xr2,G − Xr3,G) (1)

where r1, r2; r3 are random integers from 1 to NP , and F is the scaling factor
inside the interval [0, 2]. Figure 2 shows how this mutation strategy works, where
d is the difference vector between Xr2,G and Xr3,G.

Fig. 2. Random mutation with one difference vector.
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As can be seen from Eq. 1, it is possible for the mutant vector Vi,G to have
components violating pre-defined boundary constraints for the decision variables.
To repair such illegal solution (if it emerges), we modify Vi,G according to Eq. 2.

Vi,G[j] =

{
(Low[j] if Vi,G[j] < Low[j],
(Upper[j] if Vi,G[j] > Upper[j].

(2)

where Vi,G[j] denotes the jth component of vector Vi,G, and Low[j] and Upper[j]
stand for the low and upper bounds of the jth decision variable respectively.

Crossover is used to combine a mutant vector with the corresponding
target vector to create a new trial solution. When crossover is applied to
the target vector Xi,G = (Xi,G[1],Xi,G[2], . . . , Xi,G[n]) and its mutant vec-
tor Vi,G = (Vi,G[1], Vi,G[2], . . . , Vi,G[n]), we obtain the trial solution Ui,G as
expressed below:

Ui,G[j] =

{
Vi,G[j] if rand[0, 1] <= CR or j = jrand

Xi,G[j] otherwise
(3)

where Ui,G[j] is the jth component of the trial vector Ui,G, CR denotes the
probability of crossover to be specified by a user, and jrand is a randomly selected
index to ensure that Ui,G contains at least one component from Vi,G.

Selection is performed to allow for competition between a trial vector Ui,G

and its associated target vector Xi,G. If the trial vector is better than the target
solution as assessed by the objective function f, it replaces the target solution
in the next generation. Otherwise, the trial solution is discarded and the target
solution survives in the next generation. Therefore, for a minimization problem
as example, the individuals in the new generation G + 1 are given as follows:

Xi,G+1 =

{
Ui,G if f(Ui,G) < f(Xi,G)
Xi,G otherwise

(4)

The pseudocode of basic DE is given in Algorithm 1.

4 A New DE Algorithm with Parameter Adaptation

As is stated above, the scaling factor (F) and crossover rate (CR) are two impor-
tant running parameters for DE that significantly affect the optimization perfor-
mance. It is also recognized that the proper value of F may change with time in
the evolutionary process, while the crossover rate CR is more dependent on the
characteristics of the underlying problem. Hence it is important to automatically
determine and adjust such parameters for DE when solving a practical problem.
To this end we propose a new adaptive DE algorithm that dynamically adjusts
its running parameters using greedy (local) search. In this section we shall first
present the greedy scheme for parameter adjustment in Subsect. 4.1 and then we
will discuss the integration of this scheme within a DE cycle in Subsect. 4.2.
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Algorithm 1. Differential Evolution.

1: Initialize the population with randomly created individuals.
2: Calculate the objectives values of all vectors in the population.
3: while The termination condition is not satisfied do
4: Create mutant vectors according to:

Vi,G = Xr1,G + F × (Xr2,G − Xr3,G)
5: Create trial vectors by recombining target vectors with mutant vector:

Ui,G[j] =

{
Vi,G[j] if rand[0, 1] <= CR or j = jrand

Xi,G[j] otherwise

6: Evaluate trial vectors with the objective function.
7: Select vectors Xi,G+1 of the next generation by

Xi,G+1 =

{
Ui,G if f(Ui,G) < f(Xi,G)

Xi,G otherwise

8: end while

4.1 Greedy Adjustment Scheme

Our basic idea is to perform local greedy search to adjust the values of con-
trol parameters (scaling factor and crossover probability) of DE to improve its
performance. This means that at every step the current parameter assignment
is compared with its neighbours and then moves to the best candidate in the
neighbourhood. Nevertheless, the comparison of different DE parameters is not
a trivial task. It is complicated by the stochastic characteristics of the mutation
and crossover operators such that a good parameter assignment may also lead
to undesired trial solutions created in the course of search.

It is advocated in the paper that a candidate for parameter assignment under-
going sufficient tests for reliable evaluation of its quality. The tests are made in
a learning period comprising a specified number of generations to see how the
candidate was useful to contribute to the creation of good trial solutions. We
desire those parameter assignments that not only offer a high chance of survival
for trial solutions but also enable substantial improvement of fitness in the next
generation. In view of this, the relative improvement (RI) brought by a candi-
date assignment C (for either scaling factor or crossover probability) in test k is
defined as:

RI(C, k) =

{
f(Xk) ∗ 10t − f(Uk) ∗ 10t, if f(Xk) ≥ f(Uk),

0, otherwise
(5)

where Xk and Uk represent respectively the parent and trial solutions in test k,
and t is an integer such that f(Xk) ∗ 10t lies in the interval [1,10]. Further, the
progress rate (PR) for C is the average of the relative improvements from all the
m tests of using C for producing trial solutions. Thus we can write

PR(C) =
1
m

m∑
k=1

RI(C, k) (6)
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progress rate is used in this paper as the criterion to evaluate and compare
candidates for DE parameter assignments.

In the greedy search procedure, the current parameter assignment and its two
generated neighbours are randomly selected for being used in producing new
trial solutions during the learning period. The best of them is then identified
using the metric of progress rate as defined in Eq. 6. As proper values of control
parameters can change over time, we perform life-long search from one learning
period to the next to achieve continuous adjustment of parameters in the course
of optimization. An algorithmic description of the greedy scheme for parameter
adjustment is given in the following:

The greedy search for parameter adjustment:

4.2 Adaptive DE Algorithm with Greedy Search

The adaptive differential evolution algorithm is developed by incorporation of
the greedy adjustment scheme into the basic DE algorithm. The whole evolu-
tionary process is divided into a sequence of learning periods. In every learning
period, three candidates (the current parameter assignment and its two neigh-
bours) are tested in such a way that each of them gets an equal chance to be used
in producing trial solutions. The evaluation of the candidates will be done after
the learning period is ended, and the best candidate is treated as the current
assignment and the search moves on to the next learning period. By this man-
ner, greedy parameter adjustments are realized in successive learning periods to
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Algorithm 2. GADE.

1: Set CRm = 0.5, F = 0.5, LP = 3, c1 = c2 = 0.01;
2: ZF = {F − c1, F, F + c1};
3: ZCR = {CRm − c2, CRm, CRm + c2};
4: G = 1;
5: Initialize the population (X1,1, X2,1, . . . , XNP,1)
6: while The termination condition is not satisfied do
7: for i = 1 to NP do
8: Set Fi by randomly selecting one element from ZF .
9: Set µCR by randomly selecting one element from ZCR.

10: CRi = Cauchy(µCR, 0.2).
11: Create the mutant vector using the random mutation strategy by:

Vi,G = Xr1,G + F × (Xr2,G − Xr3,G)
12: Repair the mutant vector if it has values outside the boundaries:

Vi,G[j] =

{
(Low[j] if Vi,G[j] < Low[j],

(Upper[j] if Vi,G[j] > Upper[j].

13: Create the trial vector:

Ui,G[j] =

{
Vi,G[j] if rand[0, 1] ≤ CR or j = jrand

Xi,G[j] otherwise

14: if f(Ui,G) < f(Xi,G) then
15: Xi,G+1 = Ui,G

16: else
17: Xi,G+1 = Xi,G

18: end if
19: end for
20: /* Update F*/
21: if G%LP == 0 then
22: F = arg max

x∈ZF

PR(x);

23: ZF = {F − c1, F, F + c1};
24: CRm = arg max

y∈ZCR

PR(y);

25: ZCR = {CRm − c2, CRm, CRm + c2};
26: end if
27: G = G + 1;
28: end while

facilitate continuous and dynamic adjustment of F and CR values during the
execution of the DE algorithm.

The initial assignment for scaling factor is set as F = 0.5, and its two neigh-
bours are F+c1 and F−c1 respectively, where c1 is a user specified small positive
number. The initial assignment for crossover rate is a Cauchy distribution with
its centre CRm = 0.5 and its scale parameter equal to 0.2. The two neighbours
of this initial distribution are the shifted Cauchy distributions with their cen-
tres being located at CRm + c2 and CRm − c2 respectively, where c2 is a small
positive number specified by a user. Every current and neighbouring assignment
(for both scaling factor and crossover rate) receives a probability of 1/3 to be
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selected for use in order to get a sufficient number of tests in the learning period.
At the end of the learning period, a neighbouring assignment may replace the
current one according to the assessed progress rates.

A more detailed description of our adaptive DE algorithm is given in the
pseudocode below. Although the simple DE/rand/1 strategy is used in the
present version of the algorithm, the principle and mechanism described here
is generic and can be easily applied with other mutation strategies as well.

5 Experiments and Results

This section aims to examine the capability of our adaptive DE algorithm in
a real industrial scenario. We applied our algorithm on the problems of model
calibration in FOCS and then compared its results with those obtained by using
the basic DE algorithm on the same problem.

5.1 Experimental Settings

Our adaptive DE algorithm and basic DE were tested in the experiments for
comparison. Both algorithms use the binomial crossover operator, and both have
three important running parameters: population size (NP), crossover rate (CR)
and scaling factor (F). The parameters adopted for the basic DE are: NP = 60,
CR = 0.5 and F = 0.5. The parameters used in our adaptive algorithm are:
NP = 60, CRm = 0.5, F = 0.5, c1 = c2 = 0.01, and the number of generations
in a learning period LP = 3.

Both algorithms were executed 10 times in solving the model calibration
problems associated with two data sets respectively. The maximal number of
evaluations was set to a relatively low amount 2000, due to the high computa-
tional cost in fitness evaluations.

5.2 Results and Comparison in Problem 1

First, we applied the two DE algorithms to the problem of finding model para-
meters to mimic the empirical data as given in Data Set 1 (which consists of xx
samples).

The errors of the process models found by the two algorithms in the 10
executions are listed in Table 1 for comparison. In the table, we also see the
best, mean and worst errors from the 10 executions for each of the algorithms.

Table 2 shows the reduction of the best error (in absolute value and percent-
age), achieved by our adaptive DE algorithm in comparison to basic DE. This
indicates a significant improvement in the quality of the acquired solutions.

5.3 Results and Comparison in Problem 2

Second, we applied the two DE algorithms (adaptive and basic) to the problem
of model calibration to mimic the behaviour as specified in Data Set 2 (which
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Table 1. Errors of the models from the two algorithms from problem 1.

Execution DE GADE

Exec 1 277.6 224.8

Exec 2 242.8 259.7

Exec 3 250.8 243.9

Exec 4 274 247

Exec 5 266.1 243.5

Exec 6 281.8 237.9

Exec 7 269.2 247.7

Exec 8 275.6 237.8

Exec 9 267.8 235.2

Exec 10 278.2 237.8

MEAN: 268.39 241.53

WORST: 281.8 259.7

BEST: 242.8 224.8

Table 2. The reduction of error in problem 1.

Value Percentage

Improvement 18 7.41 %

Table 3. Errors of the models from the two algorithms from problem 2.

Execution DE GADE

Exec 1 577 550.8

Exec 2 564.8 559.9

Exec 3 570.1 568.7

Exec 4 558.9 570.2

Exec 5 566.5 555.5

Exec 6 573.2 551.9

Exec 7 559.6 572.7

Exec 8 567.5 541.7

Exec 9 567.8 563.5

Exec 10 585.5 571.9

MEAN: 569.09 560.68

WORST: 585.5 572.7

BEST: 558.9 541.7
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Table 4. The reduction of error in problem 2.

Value Percentage

Improvement 17.2 3.08 %

contains xx samples). Table 3 gives the results of both algorithms in the 10
executions together with the best, mean and worst values.

Table 4 shows the reduction of the best error achieved by our adaptive DE
algorithm against the basic DE. It can be seen that the error of the model is
further reduced by more than 17 using the adaptive DE algorithm, which means
a reasonable improvement of model accuracy that would bring practical benefit
to enhance the control system performance in steel production.

5.4 Evolution of the DE Parameters

In Fig. 3, we can see the evolution of the scaling factor (F ) during the optimiza-
tion process, in solving Problem 1. Since the individuals of the population were
not sufficiently distinct from each other at the beginning, the value of F started
to increase to enable big movement in the mutation.

Fig. 3. The evolution of the scaling factor F.

In Fig. 4, we can observe the change of the distribution center (CRm) for
the crossover rate during the process. The value of CRm increased for the same
reason as stated for the scaling factor F , i.e., the population members did not
have enough difference with each other. Hence we gave more chance to mutant
vectors in crossover to increase the diversity of the population.
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Fig. 4. The evolution of the distribution center for the crossover probability.

6 Relevant Work

DE has offered a powerful framework with tool and technique for applications in
real-parameter optimization and system design. In [8] DE was employed for gen-
erating optimal set points and gain tuning in a power plant control system. The
authors also showed that an additional evolutionary term could be added to the
DE technique to increase the convergence speed of the algorithm in these appli-
cations. The investigations in [9] demonstrated the feasibility and effectiveness
of two meta-heuristic techniques: DE and particle swarm optimization (PSO) to
solve the reactive power and voltage control problems. The comparative study
also reveled that PSO yielded in some cases slightly more reduction of power loss
while DE was more economical in requiring a lower number of function evalua-
tions. A multi-strategy DE algorithm [10], in which multiple mutation strategies
were selected adaptively, was used to estimate the unknown parameters of the
proton exchange membrane fuel cell (PEMFC) model. Mohanty et al. [11] applied
DE to Load Frequency Control in a multi-source power system, where DE was
used to find the optimal gains of Integral (I), Proportional Integral (PI) and
Proportional Integral Derivative (PID) controllers. Therein the parameters of
DE were tuned manually by executing multiple runs of the algorithm for each
candidate set of parameters.

It is widely recognized that DE performance is largely affected by its control
parameters (such as scaling factor and crossover rate), which are problem depen-
dent and which can vary during the course of search. Self-adaptation of para-
meters has become a new trend in the research and development of competent
DE algorithms in many industrial applications. Zou et al. [12] proposed dynamic
modification of the scaling factor and crossover rate of DE to increase its explo-
ration capability when solving the task assignment problem. More specifically,
the scaling factor was adapted according to the objective values of candidate
solutions, and crossover rate was adjusted with the increment of iterations. In
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[13] the Self-Adaptive Differential Evolution (SADE) algorithm [14] was utilized
to tune the parameters of a power system stabilizer (PSS), resulting in better
damping under small and large disturbances than those tuned by classical DE.

7 Conclusion

Model calibration is an important step in the development of accurate and reli-
able process models that provide a fundamental basis for optimal decision and
control in process automation. This chapter treats calibration as an optimization
problem of searching for model parameters to minimize the errors of the model
outputs with respect to empirical data. We present a new adaptive differential
evolution algorithm that enables dynamic adaptation of its running parameters
during the course of search. The case studies made in the scenario of the Furnace
Optimized Control System indicate that the adaptive DE algorithm yields more
precise results of model calibration than standard DE.

In spite of the successful results achieved, many works will be done in future
to further enhance the proposed algorithm. One issue that is being considered
is utilizing more advanced mutation strategy or allowing for adaptive selection
of mutation strategies from a pool of candidates. The second possibility is to
combine the adaptive DE approach with an effective local search mechanism such
as greedy local search [15,16], Quasi Newton method or variable neighborhood
search [17].
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Abstract. Ensemble methods are widely used to improve decision making in
the field of statistics and machine learning. On average, the collective solution of
multiple algorithms provides better performance than could be obtained from
any of the constituent algorithms. The ensemble concept can be also used in the
field of evolutionary algorithms. The main idea is to include many search
algorithms in the ensemble and to design effective control of interaction of
algorithms. Such interaction is implemented in different forms of island models,
coevolutionary schemes, population-based algorithm portfolios and others. In
this paper, a metaheuristic for designing multi-strategy genetic algorithm for
multimodal optimization is proposed. Multimodal optimization is the problem of
finding many or all global and local optima. In recent years many efficient
multimodal techniques have been proposed in the field of population-based
nature-inspired search algorithms. The majority of techniques are designed for
real-valued problems. At the same time many real-world problems contain
variables of many different types, including integer, rank, binary and others. In
this case, a binary representation is used. There is a lack of efficient approaches
for problems with binary representation. Moreover, binary and binarized
problems are usually “black-box” optimization problems, thus there exists the
problem of choosing a suitable algorithm and fine tuning it for a certain prob-
lem. The proposed approach contains many different multimodal genetic algo-
rithms, which implement different search strategies. The metaheuristic
adaptively controls the interactions of many search techniques and leads to the
self-configuring solving of problems with a priori unknown structure. We pre-
sent the results of numerical experiments for classical binary benchmark prob-
lems and benchmark problems from the CEC 2013 competition on multimodal
optimization. We also present the results for some real-world problems.

Keywords: Metaheuristic � Multimodal optimization � Genetic algorithm �
Niching � Self-configuration

1 Introduction

Many real-world problems have more than one optimal solution, or there exists only
one global optimum and several local optima in the feasible solution space. Such
problems are called multimodal. The goal of multimodal optimization (MMO) is to find
all optima (global and local) or a representative subset of all optima.
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Evolutionary and genetic algorithms (EAs and GAs) demonstrate good perfor-
mance for many complex optimization problems. EAs and GAs are also efficient in the
multimodal environment as they use a stochastic population-based search instead of the
individual search in conventional algorithms. At the same time, traditional EAs and
GAs have a tendency to converge to the best-found optimum losing population
diversity.

In recent years MMO have become more popular, and many efficient
nature-inspired MMO techniques were proposed. Almost all search algorithms are
based on maintaining the population diversity, but differ in how the search space is
explored and how optima basins are located and identified over a landscape. The
majority of algorithms and the best results are obtained for real-valued MMO problems
[3]. The main reason is the better understanding of landscape features in the continuous
search space. Thus many well-founded heuristics can be developed.

Unfortunately, many real-world MMO problems are usually considered as
black-box optimization problems and are still a challenge for MMO techniques.
Moreover, many real-world problems contain variables of many different types,
including integer, rank, binary and others. In this case, usually binary representation is
used. Unfortunately, there is a lack of efficient approaches for problems with binary
representation. Existing techniques are usually based on general ideas of niching and
fitness sharing. Heuristics from efficient real-valued MMO techniques cannot be
directly applied to binary MMO algorithms because of dissimilar landscape features in
the binary search space.

In this study, a novel approach based on a metaheuristic for designing
multi-strategy MMO GA is proposed. Its main idea is to create an ensemble of many
MMO techniques and adaptively control their interactions. Such an approach would
lead to the self-configuring solving of problems with a priori unknown structure.

The rest of the paper is organized as follows. Section 2 describes related work.
Section 3 describes the proposed approach. In Sect. 4 the results of numerical exper-
iments and real-world MMO problems solving are discussed. In the Conclusion the
results and further research are discussed.

2 Related Work

The problem of MMO has exists since the first EAs. The first MMO techniques were
applied in EAs and GAs for improvement in finding the global optimum in the mul-
timodal environment.

The MMO, in general, can have at least 3 goals [14]:

• to find a single global optimum over the multimodal landscape only;
• to find all global optima;
• to find all optima (global and local) or a representative subset of all optima.

It is obvious that the second and the third goals are more interesting from both a
theoretical and a practical point of view.

Over the past decade interest for this field has increased. The recent approaches are
focused on the goal of exploring the search space and finding many optima to the
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problem. Many efficient algorithms have been proposed. In 2013, the global comple-
tion on MMO was held within IEEE CEC 2013 [8].

The list of widespread MMO techniques includes [3, 4, 10]:

• General Techniques:
– Niching (parallel or sequential)
– Fitness sharing, Clearing and Cluster-based niching
– Crowding and Deterministic crowding
– Restricted tournament selection (RTS)
– Mating restriction
– Species conservation

• Special Techniques:
– Niching memetic algorithm
– Multinational EA
– Bi-objective MMO EA
– Clustering-based MMO EA
– Population-based niching
– Topological algorithms

• Other Nature-inspired Techniques:
– PSO, ES, DE, Ant Colony Optimization and others

The main advantage of the general techniques is that they do not use any specific
information about the objective landscape and features of the search space. Thus they
can be applied for a wide range of MMO problems with different representations.

Binary and binarized MMO problems are usually solved using the GA based on
general techniques. Also special techniques are applied, but some of their features can be
lost in the binary space. Unfortunately, many efficient nature-inspired MMO algorithms
have no binary version and cannot be easily converted to binary representation.

As we can see from many studies, there is no universal approach that is efficient for
all MMO problems. Many researches design hybrid algorithms, which are generally
based on a combination of search algorithms and some heuristic for niching
improvement. For example, here are four top-ranked algorithms from the CEC 2013
competition on MMO: Niching the CMA-ES via Nearest-Better Clustering (NEA2), A
Dynamic Archive Niching Differential Evolution algorithm (dADE/nrand/1), CMA-ES
with simple archive (CMA-ES) and Niching Variable Mesh Optimization algorithm
(N-VMO) [8].

Another way is combining many basic MMO algorithms to run in parallel, migrate
individuals and combine the results. In [2] an island model is applied, where islands are
iteratively revised according to the genetic likeness of individuals. In [21] four MMO
niching algorithms run in parallel to produce offspring, which are collected in a pool to
produce a replacement step. In [15] the same scheme is realized using the clearing
procedure.

The conception of designing MMO algorithms in the form of an ensemble seems to
be perspective. A metaheuristic that includes many different MMO approaches (dif-
ferent search strategies) can deal with many different MMO problems. And such a
metaheuristic can be self-configuring due to the adaptive control of the interaction of
single algorithms during the problem solving.

58 E. Sopov



In [19] a self-configuring multi-strategy genetic algorithm in the form of a hybrid of
the island model, competitive and cooperative coevolution was proposed. The
approach is based on a parallel and independent run of many versions of the GA with
many search strategies, which can deal with many different features of optimization
problems inside the certain optimization class. The approach has demonstrated good
results with respect to multi-objective and non-stationary optimization.

3 Metaheuristic for MMO GA Ensemble Control

In the field of statistics and machine learning, ensemble methods are used to improve
decision making. On average, the collective solution of multiple algorithms provides
better performance than could be obtained from any of the constituent algorithms. This
concept can be also used in the field of EA. The main idea is to include different search
strategies in the ensemble and to design effective control of algorithm interaction. Our
hypothesis is that different EAs are able to deal with different features of the opti-
mization problem, and the probability of all algorithms failing with the same challenge
in the optimization process is low. Moreover, the interaction of algorithms can provide
the ensemble with new options for optimization, which are absent in stand-alone
algorithms.

The general structure of the self-configuring multi-strategy genetic algorithm pro-
posed in [19] is called Self*GA (the star sign corresponds to the certain optimization
problem) and it is presented in Fig. 1.

The total population size (or the sum of populations of all stand-alone algorithms) is
called the computational resource. The resource is distributed between algorithms,
which run in parallel and independent over the predefined number of iterations (called
the adaptation period). All algorithms have the same objective and use the same
encoding (solution representation). All populations are initialized at random. After the

Fig. 1. The Self*GA structure.
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distribution, each GA included in Self*GA has its own population which does not
overlap with populations of other GAs. At the first iteration, all algorithms get an equal
portion of the resource. This concept corresponds to the island model, where each
island realizes its own search strategy.

After the adaptation period, the performance of individual algorithms is estimated
with respect to the objective of the optimization problem. After that algorithms are
compared and ranked. Search strategies with better performance increase their com-
putational resource (the size of their populations). At the same time, all algorithms have
a predefined amount of resource that is not distributed to give a chance for algorithms
with low performance. This concept corresponds to the competitive coevolution
scheme.

Finally, migrations of the best solutions are set to equate the start positions of
algorithms for the run with the next adaptation period. According to the optimization
problem, such a migration can be deterministic, selection-based or random. This
concept corresponds to cooperative coevolution.

Such a technique eliminates the necessity to define an appropriate search strategy
for the problem as the choice of the best algorithm is performed automatically and
adaptively during the run.

Now we will discuss the design of a Self*GA for MMO problems that can be
named SelfMMOGA.

At the first step, we need to define the set of individual algorithms included in the
SelfMMOGA. In this study we use six basic techniques, which are well-studied and
discussed [3, 17], and they can be used with binary representation with no modifica-
tion. Algorithms and their specific parameters are presented in Table 1. All values for
radiuses and distances in Table 1 are in the Hamming metric for binary problems and
in the Euclidean metric for continuous problems.

The motivation of choosing certain algorithms is that if the SelfMMOGA performs
well with basic techniques, we can develop the approach with more complex algo-
rithms in further works.

The adaptation period is a parameter of the SelfMMOGA. Moreover, the value
depends on the limitation of the computational resource (total number of fitness
evaluations).

Table 1. The SelfMMOGA component algorithms.

Algorithm Parameters

Alg1 Clearing Clearing radius, Capacity of a niche
Alg2 Sharing Niche radius, a
Alg3 Clustering Number of clusters, min distance to centroid, max

distance to centroid
Alg4 Restricted Tournament

Selection (RTS)
Window size

Alg5 Deterministic Crowding –

Alg6 Probabilistic Crowding –
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The key point of any coevolutionary scheme is the performance evaluation of a
single algorithm. For MMO problems performance metrics should estimate how many
optima were found and how the population is distributed over the search space.
Unfortunately, good performance measures exist only for benchmark MMO problems,
which contain knowledge of the optima. Performance measures for black-box MMO
problems are still being discussed. Some good recommendations can be found in [13].
In this study, the following criteria are used.

The first measure is called Basin Ratio (BR). The BR calculates the number of covered
basins, which have been discovered by the population. It does not require knowledge of
optima, but an approximation of basins is used. The BR can be calculated as

BR popð Þ ¼ l
k

ð1Þ

l ¼
Xk

i¼1
min 1;

X
x 2 pop
x 6¼ zi

bðx; ziÞ

8
><

>:

9
>=

>;

b x; zð Þ ¼ 1; if x 2 basinðzÞ
0; otherwise

�

where pop is the population, k is the number of identified basins by the total population,
l is the indicator of basin coverage by a single algorithm, b is a function that indicates if
an individual is in basin z.

To use the metric (1), we need to define how to identify basins in the search space
and how to construct the function b(x, z).

For continuous MMO problems, basins can be identified using different clustering
procedures like Jarvis-Patrick, the nearest-best and others [12]. In this study, for MMO
problems with binary representation we use the following approach. We use the total
population (the union of populations of all individual algorithms in the SelfMMOGA).
For each solution, we consider a predefined number of its nearest neighbours (with
respect to the Hamming distance). If the fitness of the solution is better, it is denoted as a
local optima and the centre of the basin. The number of neighbours is a tunable
parameter. For a real-world problem, it can be set from some practical point of view. The
simplified basin identification procedure is described using a pseudo-code as follows:
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The function b(x, z) can be easily evaluated by defining if individual x is in a
predefined radius of basin centre z. The radius is a tunable parameter. In this study, we
define it as

radius ¼ total population size
k

ð2Þ

where k is the number of identified basins (k ¼ Zj j).
The second measure is called Sum of Distances to Nearest Neighbour (SDNN). The

SDNN penalizes the clustering of solutions. This indicator does not require knowledge
of optima and basins. The SDNN can be calculated as

SDNN popð Þ ¼
Xpopsize

i¼1
dnnðxi; popÞ ð3Þ

dnn xi; popð Þ ¼ miny2popnfxig dist xi; yð Þf g

where dnn is the distance to the nearest neighbour, dist is the Hamming distance.
Finally, we combine the BR and the SDNN in an integrated criterion K:

K ¼ a � BRðpopÞþ ð1� aÞ � SDNNðpopÞ ð4Þ

where SDNN is a normalized value of SDNN, a defines weights of the BR and the
SDNN in the sum (a 2 ½0; 1�Þ.

Next, we need to design a scheme for the redistribution of computational resources.
New population sizes are defined for each algorithm. In this study, all algorithms give
to the “winner” algorithm a certain percentage of their population size, but each
algorithm has a minimum guaranteed resource that is not distributed. The guaranteed
resource can be defined by the population size or by problem features.

At the coopearative stage, in many coevolutionary schemes, all individual algo-
rithms begin each new adaptation period with the same starting points (such a
migration scheme is called “the best displaces the worst”). For MMO problems, the
best solutions are defined by discovered basins in the search space. As we already have
evaluated the approximation of basins (Z), the solutions from Z are introduced in all
populations replacing the most similar individuals.

Stop criteria in the SelfMMOGA are similar to those in the standard GA: maximum
number of objective evaluations, the number of generations with no improvement
(stagnation), etc.

4 Experimental Results

To estimate the approach performance, we have used the following list of benchmark
and real-world problems

• Six binary MMO problems are from [21]. These test functions are based on the
unitation functions, and they are massively multimodal and deceptive.
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• Eight real-valued MMO problems are from CEC 2013 Special Session and Com-
petition on Niching Methods for Multimodal Function Optimization [9].

• Fuzzy rule base classification system design using MMO GA.
• Designing loan portfolios for the Bank of Moscow.

We have denoted the functions as in the source papers. Some details of the
benchmark problems are presented in Table 2.

In all comparisons, all algorithms have equal maximum number of the objective
evaluations, but may differ in population sizes.

The following criteria for estimating the performance of the SelfMMOGA over the
benchmark problems are used for continuous problems:

• Peak Ratio (PR) measures the percentage of all optima found by the algorithm (5).
• Success Rate (SR) measures the percentage of successful runs (a successful run is

defined as a run where all optima were found) out of all runs.

PR ¼ q 2 Qjdnnðq; popÞ� ef gj j
k

ð5Þ

where Q ¼ q1; q2; . . .; qkf g is a set of known optima, e is accuracy level.
The maximum number of function evaluation and the accuracy level for the PR

evaluation are the same as in CEC completion rules [9]. The number of independent
runs of the algorithm is 50.

Table 2. Test suite.

Problem Number of desirable optima Problem dimensionalitya

binaryF11 32 global 30
binaryF12 32 global 30
binaryF13 27 global 24
binaryF14 32 global 30
binaryF15 32 global 30
binaryF16 32 global 30
cecF1 2 global + 3 local 9, 12, 15, 19, 22
cecF2 5 global 4, 7, 10, 14,17
cecF3 1 global + 4 local 4, 7, 10, 14,17
cecF4 4 global 14, 22, 28, 34, 42
cecF5 2 global + 2 local 11, 17, 24, 31, 37
cecF6 18 global + 742 local 16, 22, 30, 36, 42
cecF7 36 global 14, 20, 28, 34, 40
cecF8 12 global 8, 14, 20, 28, 34
aReal-valued problems have been binarized using the standard binary
encoding with 5 accuracy levels proposed in the CEC 2013
competition rules.
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In the case of binary problems, we cannot define the accuracy level in the PR, thus
the exact points in the search space have to be found. This is a great challenge for
search algorithms, thus we have substituted the SR measure with Peak Distance (PD).
The PD indicator (6) calculates the average distance of known optima to the nearest
individuals in the population [13].

PD ¼ 1
k

Xk

i¼1
dnnðqi; popÞ ð6Þ

To demonstrate the control of algorithm interaction in the SelfMMOGA, we have
chosen an arbitrary run of the algorithm on the cecF1 problem and have visualized the
distribution of the computational resource (see Fig. 2).

The total population size is 200 and the minimal guaranteed amount of the com-
putational recourse is 10. All algorithms are initialized with 33 individuals. The
maximum number of generations is 200 and the size of the adaptation period is 10, thus
the horizontal axis contains numeration of 20 periods.

As we can see, there is no algorithm that wins all the time. At the first two periods,
Sharing (Alg2) and Clearing (Alg1) had better performance. The highest amount of the
resource was won by Clustering (Alg3) at the 10th period. At the final stages, Deter-
ministic Crowding (Alg5) showed better performance.

4.1 Experimental Results for Binary Benchmark Problems

The results of estimating the performance of the SelfMMOGA with the pack of binary
problems are presented in Table 3. The table contains the values of the PR, the SR and
the PD averaged over 50 independent runs. We also have compared the results with
Ensemble of niching algorithms (ENA) proposed in [21]. There is only the SR value for
the ENA.

Fig. 2. Example of the SelfMMOGA run.
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The setting for the SelfMMOGA are:

• Maximum number of function evaluation is 50000 (as for the ENA);
• Total population size is 200 (the ENA uses 500);
• Adaptation period is 10 generations (25 times);
• All specific parameters of individual algorithms are self-tunable using the concept

from [16].

As we can see, binary problems are not too complex for the SelfMMOGA and the
ENA. Therefore, we will analyze the results in details. In Table 3, the results for the
ENA, stand-alone algorithms, the average of 6 stand-alone algorithms and the Self-
MMOGA (6 algorithms ensemble) are presented. The average value (“Mean” column)
can be viewed as the average performance of a randomly chosen algorithm. Such an
estimate is very useful for black-box optimization problems, because we have no
information about problem features and, consequently, about what algorithms to use. If
the performance of the SelfMMOGA is better that the average of its component, we can
conclude that on average the choice of the SelfMMOGA will be better.

Table 3. Detailed results for binary problems.

ENA Alg1 Alg2 Alg3 Alg4 Alg5 Alg6 Mean SelfMMOGA

Problem: binaryF11

PR – 0.94 0.84 0.91 1.00 0.97 0.78 0.91 1.00
SR 1.00 0.90 0.84 0.88 1.00 0.94 0.80 0.89 1.00
PD – 2.40 3.37 2.40 0.00 2.33 3.30 2.30 0.00
Problem: binaryF12
PR – 0.97 0.97 1.00 1.00 0.97 0.84 0.96 1.00
SR 1.00 0.96 0.98 1.00 1.00 0.94 0.84 0.95 1.00
PD – 2.00 1.00 0.00 0.00 1.67 3.62 1.38 0.00
Problem: binaryF13
PR – 1.00 0.96 0.96 0.93 0.96 0.89 0.95 1.00
SR 1.00 1.00 0.96 0.94 0.90 0.94 0.84 0.93 1.00
PD – 0.00 2.50 2.67 2.80 2.67 3.37 2.34 0.00
Problem: binaryF14
PR – 0.91 0.81 0.91 1.00 0.94 0.75 0.89 1.00
SR 1.00 0.92 0.92 0.90 1.00 0.94 0.80 0.91 1.00
PD – 3.25 2.50 2.60 0.00 2.67 3.20 2.37 0.00
Problem: binaryF15
PR – 0.88 0.88 0.84 0.88 0.88 0.72 0.84 1.00
SR 1.00 0.88 0.86 0.84 0.86 0.84 0.64 0.82 1.00
PD – 2.33 2.57 2.62 2.71 2.37 3.06 2.61 0.00
Problem: binaryF16
PR – 0.84 0.75 0.84 0.88 0.78 0.56 0.78 1.00
SR 0.99 0.84 0.80 0.86 0.84 0.76 0.66 0.79 1.00
PD – 3.25 2.80 3.00 2.87 3.08 3.47 3.08 0.00
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As we can see from Table 3, the SelfMMOGA always outperforms the average of
its stand-alone component algorithms for binary problems. Moreover, the ensemble can
provide results that are better than obtained from component algorithms. For example,
for problems F15 and F16 none of component algorithms has a SR value equal to 1, but
the SelfMMOGA does.

4.2 Experimental Results for Continuous Benchmark Problems

The results of estimating the performance of the SelfMMOGA with the pack of con-
tinuous problems are presented in Tables 4 and 5. Table 4 shows a comparison of
results averaged over all problems with other techniques. Table 5 contains ranks of
algorithms by separate criteria.

All problems and settings are as in the rules of the CEC 2013 competition on
MMO. For each problem there are 5 levels of accuracy of finding optima (e = {1e–01,
1e–02, 1e–03, 1e–04, 1e–05}). Thus, each problem has been binarized 5 times. The
dimensionalities of binarized problems are presented in Table 2.

We have compared the results of the SelfMMOGA runs with some efficient
techniques from the competition. The techniques are DE/nrand/1/bin and Crowding
DE/rand/1/bin [9], N-VMO [11], dADE/nrand/1 [5], and PNA-NSGAII [1].

The settings for the SelfMMOGA are:

• Maximum number of function evaluation is 50000 (for cecF1-cecF5) and 200000
(for cecF6-cecF8);

• Total population size is 200;
• Adaptation period is 10 generations 25 times (for cecF1-cecF5) and 25 generations

40 times (cecF6-cecF8);
• All specific parameters of individual algorithms are self-tunable.

As we can see from Tables 4 and 5, the SelfMMOGA shows results comparable
with popular and well-studied techniques. It yields to dADE/nrand/1 and N-VMO, but
we should note that these algorithms are specially designed for continuous MMO
problems, and have taken 2nd and 4th places [8], respectively, in the CEC competition.
At the same time, the SelfMMOGA has very close average values to the best two
algorithms, and outperforms PNA-NSGAII, CrowdingDE and DE, which have taken
7th, 8th and 9th places in the competition respectively [8].

In this study, we have included only basic MMO search techniques in the Self-
MMOGA. Nevertheless, it performs well due to the effect of collective decision
making in the ensemble. The key feature of the approach is that it operates in an
automated, self-configuring way. Thus, the SelfMMOGA can be a good alternative for
complex black-box MMO problems.
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4.3 Experimental Results for Real-World Problem of Fuzzy Rule Base
Classification System Design

Modern machine learning methods often use evolutionary computation techniques as a
design tool, which is universal and can be applied for various structures. These evo-
lutionary algorithms applied for machine learning problems are often called
genetics-based machine learning algorithms. The fuzzy rule-based classification sys-
tems (FRBCSs) are effective approaches in machine learning, as they can provide
easy-to-understand models for the end users [6].

Traditional GAs applied to the FRBCSs design have a tendency to converge to the
best-found optimum losing population diversity. Such single best-found solution
usually has very good accuracy, but may have a structure that is not convenient for
human understanding and analysis. Thus there is a good idea to find many (or all)
global and acceptable local optima which represent different solutions to the problem.
In a case of the FRBCS, such optima, while saving comparable accuracy, may contain
different rules in the rule base and/or different fuzzy term structures.

The number of rules in computational experiments was fixed and equal to 12.
The FRBCS method, which have been implemented, is based on a simple rule base
encoding into the GA chromosome. The chromosome contains fuzzy sets assigned to
input variables in the premise part and class labels assigned to output variables in the
conclusion part of each rule in the rule base. The number of fuzzy sets for granulation
was fixed and equal to 5 + 1. Additional fuzzy term is the “Don’t care” condition
(corresponding input variable is ignored). Including this term allows decreasing the size
of the rule base and increasing the rules’ generalization ability. If all terms in a certain

Table 4. Average PR and SR for each algorithm.

e Self
MMOGA

DE/nrand/
1/bin

cDE/rand/
1/bin

N-VMO dADE/
nrand/1

PNA-
NSGAII

PR SR PR SR PR SR PR SR PR SR PR SR

1e–01 0.962 0.885 0.850 0.750 0.963 0.875 1.000 1.000 0.998 0.938 0.945 0.875
1e–02 0.953 0.845 0.848 0.750 0.929 0.810 1.000 1.000 0.993 0.828 0.910 0.750
1e–03 0.943 0.773 0.848 0.748 0.847 0.718 0.986 0.813 0.984 0.788 0.906 0.748
1e–04 0.907 0.737 0.846 0.750 0.729 0.623 0.946 0.750 0.972 0.740 0.896 0.745
1e–05 0.816 0.662 0.792 0.750 0.642 0.505 0.847 0.708 0.835 0.628 0.811 0.678
Average 0.916 0.780 0.837 0.750 0.822 0.706 0.956 0.854 0.956 0.784 0.893 0.759

Table 5. Algorithms ranking over cecF1-cecF8 problems.

Rank by PR criterion Algorithm Rank by SR criterion Algorithm

1 N-VMO and dADE/nrand/1 1 N-VMO
2 SelfMMOGA 2 dADE/nrand/1
3 PNA-NSGAII 3 SelfMMOGA
4 DE/nrand/1/bin 4 PNA-NSGAII
5 cDE/rand/1/bin 5 DE/nrand/1/bin
– – 6 cDE/rand/1/bin

Self-configuring Ensemble of Multimodal Genetic Algorithms 67



rule are set to “Don’t care” (DC), the rule is considered as empty and not used in
classification, so the algorithm is capable of decreasing the number of rules.

The fitness function includes two values: error on the training set with weight 1 and
the complexity of the rule base with weight 0.1. The complexity of the rule base was
calculated as the ratio of number of non-empty fuzzy sets to the total number of
possible fuzzy sets in the rule base. Including complexity of the rule base into the
fitness function allows creating of simpler rule bases. The distance between two rule
bases for the MMO GA was calculated as the number of different fuzzy sets for these
rule bases. More detailed information can be found in [18].

The computational experiments for the fuzzy classification were performed on 7
datasets from UCI and KEEL repositories [7, 20]. Table 6 contains the information
about the datasets.

The Table 7 contains the classification results for the test sample obtained with the
standard GA and three best solutions obtained with the SelfMMOGA.

As we can see, for three datasets the standard GA allows finding most accurate
solutions. However, the SelfMMOGA outperforms the standard GA on 4 datasets out
of 7. Moreover, the best solution is not always the first one – for example, for datasets
Australian and Liver, the best solution was second or even third. Thus, using this
method, several local optima have been found, and the researcher is able to select one
of them.

Table 6. Datasets description.

Dataset Number of instances Number of features Number of classes

Australian credit 690 14 2
Banknote 1372 4 2
Column 2c 310 6 2
Column 3c 310 6 3
Ionosphere 351 34 2
Liver 345 6 2
Seeds 210 7 3

Table 7. Classification results for test sample.

Dataset Standard
GA

SelfMMOGA
Solution 1

SelfMMOGA
Solution 2

SelfMMOGA
Solution 3

Australian 0.839 0.862 0.867 0.816
Banknote 0.947 0.892 0.867 0.862
Column 2c 0.773 0.789 0.768 0.751
Column 3c 0.668 0.741 0.674 0.619
Ionosphere 0.747 0.680 0.656 0.665
Liver 0.567 0.586 0.597 0.598
Seeds 0.874 0.793 0.691 0.621
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As an example, we provide three rule bases for Liver dataset with the best accuracy,
obtained on the last iteration. The rule bases are presented in Figs. 3, 4 and 5. Each row
is a single rule, where every position contains the fuzzy term for corresponding vari-
able, and the last position is the assigned class label. The DC (“Don’t Care”) term
means that corresponding variable is ignored in a rule.

Fig. 3. Solution 1 for Liver dataset.

Fig. 4. Solution 2 for Liver dataset.
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These rule bases contain 10, 12 and 10 rules and are very different, although they
have almost the same accuracy about 0.544. We suggest that the results can help the
human experts in a field of the solving problem to obtain better (or may be very new)
information about the problem features.

4.4 Experimental Results for Real-World Problem of Designing Loan
Portfolios for the Bank of Moscow

The problem of bank loan portfolio design is an optimization problem of maximizing
the profit of the bank with some constraints on the amount of free liabilities, the amount
of credit requested, periods of credits, credit interests and so on. Input data to the
problem is a set of credit requests from loan borrowers. The bank portfolio is a subset
of requests that are approved by the bank.

In this paper, the loan portfolio based on data presented by Krasnoyarsk department
of the Bank of Moscow is discussed. The following profit model (optimization
objective) is used (7):

Profit Xð Þ ¼
XN

j¼1
kj � ð1þ dj � tjÞ � xj ! max ð7Þ

Risk Xð Þ ¼ 1
PN

j¼1 xj
�
XN

j¼1
Pj � xj � q

XN

j¼1
kj � xj �F

Fig. 5. Solution 3 for Liver dataset.
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X ¼ x1; x2; . . .; xNð Þ; xi 2 f0; 1g

where F – the amount of free liabilities held by the Bank at a given time; N – the
number of borrowers; kj – the amount of credit requested by the j-th borrower j = 1, N;
tj – the period for which the j-th borrower takes a loan; xj – Boolean variable taking the
value 1, if the kj loan is issued, and 0 otherwise; dj – interest (%) on j-th credit; Pj –

probability of non-payment of loan and interest on the loan; q – limitation on the total
riskiness of the loan portfolio.

As a candidate solution is binary vector, there is no need to encode it to chro-
mosome. The fitness function is defined as sum of the Profit and penalty functions for
given constraints.

The initial information about credit requests and their characteristics is presented in
Table 8.

The length of the chromosome is 50. The search space contains 250 (�1015) dif-
ferent portfolios. The maximum number of the fitness evaluation is set to 106 that is 8 *
10−10 % of the cardinality of the search space.

The results of the bank portfolio design (global and three local solutions) are
presented in Table 9.

Table 8. Initial data for the loan portfolio design problem.

Request no. Request amount Loan rate (%) Period Risk

1 10 000 000 25 75 0.042
2 5 300 000 28 80 0.039
3 2400000 25 91 0.029
4 50 000 000 23 84 0.033
5 1 000 000 28 64 0.026
6 500 000 30 76 0.046
7 250 000 37 91 0.044
���
48 9 000 000 27 86 0.024
49 22 000 000 29 91 0.016
50 350 000 27 69 0.026
Total sum of requests = 256 695 000
The amount of free liabilities = 188 500 000

Table 9. Results for the loan portfolio problem.

Solutions
(the structure of the loan portfolio)

Profit of
portfolio

Rest of free
liabilities

Total
riskiness

01111011111111110111101000111110111010000101010111 199734518.9 30000 0.0292
11011100111110110110011101110101111010100101011110 199691164 15000 0.0286
01011110101111100011101110111111011001111011001110 199668728.9 15000 0.028
00110011010001010110111000110110101111110101101111 199593407.3 10000 0.0276
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As we can see from Table 9, solutions obtained with the SelfMMOGA have very
close values of the profit, but have very different structures. Thus these portfolios can
be used as alternative solutions or as additional information for the portfolio analysis.

The problem has been also solved using the brute-force search. The first best
solution founded by the SelfMMOGA is the exact global solution to the problem.

5 Conclusions

In this study, a metaheuristic for control of MMO GA ensemble (called SelfMMOGA)
is proposed. It involves many different search strategies in the process of MMO
problem solving and adaptively control their interactions.

The SelfMMOGA allows complex MMO problems to be dealt with, which are the
black-box optimization problems (a priori information about the objective and its
features are absents or cannot be introduces in the search process). The algorithm uses
binary representation for solutions, thus it can be implemented for many real-world
problems with variables of arbitrary (and mixed) types.

We have included 6 basic MMO techniques in the SelfMMOGA realization to
demonstrate that it performs well even with simple core algorithms. We have estimated
the SelfMMOGA performance with a set of binary benchmark MMO problems and
continuous benchmark MMO problems from CEC 2013 Special Session and Com-
petition on Niching Methods for Multimodal Function Optimization. The proposed
approach has demonstrated a performance comparable with other well-studied
techniques.

Experimental results show that the SelfMMOGA outperforms the average perfor-
mance of its stand-alone algorithms. It means that it performs better on average than a
randomly chosen technique. This feature is very important for complex black-box
optimization, where the researcher has no possibility of defining a suitable search
algorithm and of tuning its parameters.

We have also applied the SelfMMOGA for solving some real-world problems to
demonstrate the effect of identifying many optima to the problem. The key feature of
the approach is that it operates in an automated, self-configuring way. Thus, the
SelfMMOGA can be a good alternative for solving complex black-box MMO
problems.

In further works, we will investigate the SelfMMOGA using more advanced
component techniques.

Acknowledgements. The research was supported by President of the Russian Federation grant
(MK-3285.2015.9).
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Abstract. Two parallelization techniques, GPGPU and Pthreads for multipro-
cessor architectures, are used to implement a SPSO algorithm in order to solve
electromagnetic optimization problems. Several configurations for the GPGPU
implementation are tested and a new full parallel minimum branching imple-
mentation is proposed. The best GPGPU approaches are then compared with a
Pthreads implementation in terms of speed up and solution quality. To test the
efficiency of the parallelization techniques two electromagnetic optimization
problems were chosen, namely the TEAM22 benchmark and Loney’s solenoid.
In the end the paper provides suggestions regarding what parallelization tech-
nique should be used considering the implementation features of the opti-
mization function.

Keywords: SPSO � GPGPU � Pthreads � Electromagnetic field � Optimization

1 Introduction

Electromagnetic optimizations problems are well known for their complex objective
functions which for evaluation involve solving electromagnetic field equations. The
objective function is most of the times multidimensional, with several local minimum
and a wide search area, while the optimization variables often have to meet difficult
constraints. For this reasons the evaluation of the objective function is usually com-
putational intensive, requires a large number of subroutine calls (sometimes recursive),
having a high level of branching, and many instructions [1, 2].

Since deterministic approaches like the gradient descent or conjugate gradient can
not be used because of the multiple local minimum, in the past years stochastic
methods based on, simulated annealing, tabu search, genetic algorithms, or swarm
optimization, were widely adopted as standard methods for solving electromagnetic
problems [3, 4]. The advantages of the heuristics based methods are their ability to find
the global optimum, usually without knowing the objective function derivatives, and
their robustness. The disadvantage of the stochastic methods is the large number of
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evaluations for the objective function, essential for real world optimization problems
which for the evaluation is often time consuming.

To decrease the solving time there are the following options: to reduce the number
of objective function evaluations by using more efficient stochastic methods [5, 6], to
implement parallel and/or distributed optimization algorithm architectures [7], or to
decrease the objective function evaluation time using methods specific to electro-
magnetic problems [8].

In this paper two different parallelization techniques, Pthreads (POSIX threads) for
multiprocessor architectures, and GPGPU (General Purpose Computation on Graphics
Processing Units), are investigated for accelerating an optimization algorithm, namely
SPSO (Standard Particle Swarm Optimization).

At first, a new GPGPU parallel implementation is proposed and several GPGPU
configurations are compared. The proposed implementation is designed in order to deal
with the specific implementation aspects of the electromagnetic objective functions.
Afterwards, the most efficient GPGPU approach is compared with a multiprocessor
implementation, in terms of speed up and solution fitness, for different SPSO swarm
sizes. The parallel implementation for the GPU (Graphics Processing Unit) will use the
CUDA language while the implementation for the multiprocessor architecture will use
Pthreads. To test and compare the SPSO parallelization techniques two electromagnetic
optimization benchmark problems, with different implementation features, have been
chosen, TEAM22 and Loney’s solenoid [9, 10].

2 SPSO Algorithm

Initially proposed by Kennedy and Eberhart [11], PSO (Particle Swarm Optimization)
is an iterative optimization algorithm which has the roots in biology and is inspired
from the social behavior inside a bird flock or a fish school. Each particle in the swarm
is described by position and velocity. The position encapsulates the potential solution
of the optimization problem (its coordinates in the searching space) while the velocity
describes the way the position is modified.

At iteration (time) t + 1 the position xi and the velocity vi of each particle i in the
swarm are computed as follows:

xi ðtþ 1Þ ¼ xi ðtÞ þ vi ðtþ 1Þ; ð1Þ

vi ðtþ 1Þ ¼ wv � vi ðtÞþwPB;i � r1 � DxPB iðtÞþwGB � r2 � DxGBðtÞ; ð2Þ

DxPB iðtÞ ¼ xPB iðtÞ � xi ðtÞ; DxGBðtÞ ¼ xGBðtÞ � xi ðtÞ; ð3Þ

where xPB, xGB are the best personal position and the best position in the group
(swarm), wv, wPB, wGB are the weights for velocity, “cognitive” term and “social” term,
and r1, r2 two random numbers distributed uniformly in the interval [0, 1). So the time
step is considered 1 and the velocity vector is computed as a weighted average,
assuring a random but enough smooth movement of particles, attracted to the best
known position.
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The main issues of the original PSO are the high probability of being trapped in
local minima and the large number of objective function evaluations needed to find the
global solution. During time, for improving the performance of the PSO different
approaches were proposed. Some of the most efficient PSO based algorithms available
today are IPSO (Intelligent PSO) [5], SPSO (Standard PSO) [12], QPSO (Quantum-
behaved PSO) [13] and DPSO (Discrete PSO) [14].

Currently at its third version [15], SPSO modifies the classical algorithm in terms of
initialization, velocity/position update equations, neighborhood and confinement. In the
case of SPSO, the particles of the swarm are connected, each connection representing a
link between two different particles. A connection has an informed and an informing
particle, the first particle knowing the personal best and the position of the second
particle. Thus, each informed particle has a set of informing particles called neigh-
borhood. SPSO uses a random topology which changes the connections graph at each
unsuccessful iteration (when the global best solution is not improved).

The initializations for position and velocity are made to avoid leaving the search
area, especially when the optimization variables number is high. The position coor-
dinates are generated randomly for each direction (d) using a uniform distribution,
while the velocity coordinates are generated taken into consideration the generated
position coordinates:

xið0Þ ¼ Uðmind; maxdÞ; við0Þ ¼ Uðmind � xi; dð0Þ; maxd � xi; dð0ÞÞ: ð4Þ

The velocity formula introduces a new term, the center of gravity, for obtaining
“exploration” and “exploitation”. The center of gravity depends on three terms: the
current position, a term relative to the previous best xPB,i, and a term relative to the
previous best in the neighborhood xLB,i. Thus, the update equations for velocity and
positions are changed comparing with the original PSO algorithm, as follows:

vi ðtþ 1Þ ¼ w � vi ðtÞ þ x
0
i ðtÞ � xi ðtÞ; ð5Þ

xi ðtþ 1Þ ¼ xi ðtÞ þ vi ðtþ 1Þ ¼ w � vi ðtÞþ x
0
i ðtÞ; ð6Þ

where x
0
i is a random point inside a hypersphere of radius ||Gi – xi|| and center Gi, with

Gi being the center of gravity for the particle i:

Gi ¼ xi þ ðxi þ c � ðxPB i � xiÞÞþ ðxi þ c � ðxLB i � xiÞÞ
3

; ð7Þ

or if the particle i is the best particle in its neighborhood (has the best fitness value):

Gi ¼ xi þ ðxi þ c � ðxPB i � xiÞÞ
2

: ð8Þ

Another feature of the SPSO algorithm is the confinement. If during the iterative
process a particle moves outside the search space on some coordinate d, its velocity and
position are modified as follows:
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if ðxi; dðtÞ\mindÞ then f xi; dðtÞ ¼ mind; vi; dðtÞ ¼ �0:5 � vi; dðtÞg; ð9Þ

if ðxi; dðtÞ[maxdÞ then f xi; dðtÞ ¼ maxd; vi; dðtÞ ¼ �0:5 � vi; dðtÞ g: ð10Þ

The main disadvantage of stochastic methods is the large number of objective
function evaluations, especially in real problems when the objective function evalua-
tion cost is significant. In this case, the solving time for the sequential implementations
is significant, the need for a parallel optimization algorithm being obvious.

3 SPSO Parallelization – GPGPU Approach

Due to market demand for high-definition 3D graphics, and realtime processing, the
GPU evolved into a parallel, multithreaded, and manycore processor with high com-
putational power and memory bandwidth [16]. If a CPU focuses on flow control and
data caching, a GPU is designed for parallel computational applications, like graphics
rendering, and is suitable for problems where the same program is run in parallel on
many and different sets of data. In order to use the GPU for general purpose compu-
tation and to solve complex computational problems from different and various
domains (not only graphics rendering) several programming models such as CUDA
and OpenCL have been created.

3.1 Existing Approaches

The idea of using implementations based on GPGPU for PSO is not new. [17] GPGPU
implementation of SPSO 2007 showed acceleration up to 11 times compared with
traditional CPU implementations.

In [18] the authors focus on the data representation in memory (especially on the
best global position/local) such that reading/writing operations to be carried out
effectively. The obtained acceleration was up to 100 times comparing to the sequential
CPU implementation, for a problem with 100 variables and PSO algorithms with 3
sub-swarms.

In [19, 20] the authors study the results quality of the GPGPU implementations
depending on where the random numbers are generated (CPU or GPU). Both studies
suggest ways of generating random numbers on the GPU, the results having a good
quality.

In [21] the authors study the parallelization of a multi-swarm PSO algorithm to
solve combinatorial problems such as the allocation of tasks. Again, it was observed
that the GPGPU implementation led to an acceleration of 37 times compared with the
sequential version of the algorithm, especially for large problems.

In [22] a multi-objective PSO version which uses one subswarm for each objective
is parallelized. The GPGPU implementation performed 3 to 7 times faster than CPU
implementation.
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Other GPGPU implementations of the PSO based algorithms are proposed in
[23, 24].

Most of the proposed solutions are tested (like many others) on functions with
simple analytical expressions (with many local minimum but not computational
intensive), and focus on the influence over the performance of: the data transfer
between the host and the device (GPU), the manner and the place of generating random
values, the type of implementation synchronous/asynchronous, etc. Unfortunately the
solutions do not address specific aspects of the objective function implementation such
as the level of branching or the code complexity.

3.2 The Proposed Full Parallel Minimum Branching (FPMB)
Implementation

To implement the parallel version of the SPSO algorithm the CUDA-C language was
chosen. Introduced by Nvidia, CUDA [16] is a programming model a parallel com-
puting platform. The CUDA developer kit allows software developers to create general
purpose parallel applications with languages such as Java, C++, C Fortran and others.

Because of the hardware variety of the GPUs, which can have a different stream
multiprocessors number, CUDA was built as a scalable software programming model.
Thus, a CUDA software program can be executed (compiled) on any GPU device
independent of the multiprocessors number.

The CUDA programming model has as its core the following three key concepts: a
memory model, synchronization mechanisms and a hierarchy of thread blocks. These
concepts help the developer to split the task into smaller tasks which can be solved
separately by different blocks of threads. For solving a task, the threads inside a CUDA
program can work independently or can cooperate.

In order to solve a problem the threads can use barrier mechanisms to synchronize
their execution. These barrier mechanisms can only be used to synchronize threads
from the same block, and can not synchronize blocks. To synchronize blocks the
software developer must split the program into smaller sections and implement those
with different functions (kernels).

For implementing the SPSO parallel algorithm with CUDA there are the following
two possible options: an implementation for configurations with all threads in a single
block (one thread block), or an implementation for cases with multiple thread blocks. In
both implementations each thread simulates a particle’s behavior and calls functions as
evaluation, movement, personal/local best calculation, etc.

In first case, the SPSO parallel implementation is done using one kernel. The
synchronization between particles (threads), necessary at certain steps, is obtained
using __syncthreads function (a barrier mechanism for synchronization). This
strategy has as main advantage the avoidance of kernels relaunch. The disadvantages of
this implementation are: the maximum number of particles is 1024 (a block may have
at most 1024 threads), multiple warps of threads (if the particles number exceeds the
warp size – 32), and threads branching possibility (Fig. 1), depending on the objective
function.
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The branching behavior can occur for threads executing in the same warp, but not
for threads belonging to different blocks. Threads inside a warp execute one instruction
at a time, so the divergence of the threads can appear if a conditional (data dependent)
instruction has to be executed. The warp serially executes the instructions on each path:
threads on the current execution path are active, while threads which are not on the
current execution path are disabled. The threads within the warp join the same exe-
cution path only after all possible branching paths are finished. Because the branching
has as the main effect the serialization, the outcome is that not all the threads in the
same warp are executed in parallel at the same time and this leads to a penalty in the
performance (execution time). If the objective function has a high level of branching
the execution time can be severely influenced, even more for single kernel imple-
mentations [2].

For the second implementation strategy, because the barrier synchronization
mechanism provided by CUDA can only be applied for threads in the same block, the
synchronization of particles is done by implementing each particle function as a kernel.
The main disadvantage is the delay introduced by the relaunch of kernels at each SPSO
iteration. The advantages comparing with the first strategy are: the option to run all
threads in parallel (for one warp configurations, with no more than 32 threads per
block), and the swarm size is no longer limited to 1024 particles.

Another advantage of the multiple kernel implementation is that for objective
functions with a high level of branching, the branching effect in the parallel code can be
avoided if a configuration with one thread per block is used. Even in some cases this
configuration proved its efficiency [2], the main disadvantage is that the maximum
number of blocks which can run in parallel at a time is limited by the number of stream
multiprocessors of the GPU hardware.

In order to run all the threads in parallel and minimize the branching effect, the
threads can be distributed on a configuration with the maximum number of blocks
which can run in parallel. If the number of particles does not divide exactly to the

[condition = = TRUE]

ACTIVE
(executes
instructions)

INACTIVE
(disabled)

[condition = = FALSE]

INACTIVE
(disabled)

ACTIVE
(executes

instructions)

Thread x – block z Thread y – block z

IF ( condition ) {
// instructions
………………
………………
………………

} ELSE {
// instructions
………………
………………
………………

}

Code sequence

Fig. 1. Branching effect inside the same warp.
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number of blocks some threads will have to be invalidated. The invalidation is done
based on thread ID which has to be smaller than the maximum number of particles in
the swarm. If the IDs for the threads are calculated using the classical approach there
might be cases when the hardware potential might not be used efficiently in order to
minimize the branching, and entire blocks of threads might be invalidated (Fig. 2).

In order to take advantage of the whole hardware potential and minimize the
branching effect, while maintaining a full parallelism, this paper proposes a new Full
Parallel Minimum Branching (FPMB) implementation. For the FPMB approach the
threads are distributed as shown in Fig. 3. Comparing with the classical approach, in
the FPMB implementation the invalidated threads are distributed between blocks, thus
the number of active threads per block is smaller (for the given example only 2 blocks
have 3 threads comparing with 5 in the classic approach) and as a result the branching
probability is smaller.

To implement such an allocation for the threads IDs a kernel function (calcu-
lateThreadsIDs) was implemented. The kernel receives as a parameter and sets
the threads IDs in a vector stored in the global memory of the GPU device. At first the
function calculates the threads IDs for the blocks which will have all the threads active,
using the classic approach. For the remaining blocks the number of active threads will
be smaller (block dimension minus one), each of this blocks containing one thread
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Fig. 2. Thread IDs in the classical approach (16 particles, 7 blocks, 3 threads per block).
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Fig. 3. Thread IDs for the FPMB approach (16 particles, 7 blocks, 3 threads per block).
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which will be disabled and will be allocated an ID greater than or equal to the number
of particles.

__global__ void calculateThreadsIDs (int *threadsIDs) { 
 int tid; //thread ID 

 if (blockIdx.x < PARTICLES_NUMBER % B) {
  tid = blockIdx.x * blockDim.x + threadIdx.x; 
 } else { 
  if(threadIdx.x < PARTICLES_NUMBER / B) {
   tid = blockIdx.x * (blockDim.x-1) + threadIdx.x; 
  } else { 
   tid = PARTICLES_NUMBER +  
      (blockIdx.x - PARTICLES_NUMBER % B);
  }
 }
 threadsIDs[blockIdx.x * blockDim.x + threadIdx.x] = tid; 
}

As opposed to the classical approach, in the FPMB implementation the threads IDs
are calculated only once (not at each iteration) before the SPSO multi kernel main
loop. The calculateThreadsIDs function is called once, thus the branching
introduced by it is insignificant:

calculateThreadsIDs<<B,TpB>>(threadIDs);
... //initialization, evaluation, global best calculation 
... //topology generation, local best calculation 
for(int i=0; i < SPSO_ITERATIONS_NUMBER; i++) { 

moveParticles<<B,TpB>>( 
   threadsIDs, particles, particleGB, varsMin, varsMax); 
//evaluateParticles also updates PB 
evaluateParticles<<B,TpB>>(threadsIDs, particles);
findGlobalBest<<B,TpB>>( 
    threadsIDs, particles, particleGB, improvedGB);
generateTopology<<B,TpB>>(threadsIDs, particles, improvedGB);
findLocalBest<<B,TpB>>(threadsIDs, particles);

}

where B is the bocks number and TpB is the threads number per block.
The kernels variables are global variables and they are stored on the device (GPU).

The varMin, varMax arrays contain the domain limits (minimum and maximum
values) for each search space coordinate. The variable improvedGB has a boolean
type and is used to decide if the swarm topology will be changed (if the global best
value is not improved at a certain iteration the generateTopology kernel is called). The
swarm particles are stored in the particles variable, which is an array of type
Particle:
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typedef struct { 
double coords[PROBLEM_SIZE]; 
double fitnessValue; 
double velocity[PROBLEM_SIZE]; 
double gravityCenter[PROBLEM_SIZE]; 
int indexLB; 
int neighbours[PARTICLES_NUMBER];  

} Particle; 

The moveParticles function computes the new particles positions, while the
evaluate function computes the fitness value, updates the personal best (position and
fitness value) for each particle. The functions called inside evaluate (paramsCor-
rection, objectiveFunction, findPersonalBest) are device functions
which have the __device specifier. Each of these device functions is executed in
parallel (just like evaluate) for all the swarm particles. The first function checks the
coordinates restrictions (imposed by the problem) and, if is needed, changes the par-
ticle’s coordinates to meet the constraints. The second function, the optimization
problem (TEAM22 or Loney’s solenoid), has a sequential implementation and com-
putes the fitness value for a particle. Like all the other SPSO kernel functions, in the
beginning, it computes the index for accessing the threadsIDs global variable,
where will find its thread ID.

__global__ void evaluateParticles( 
            int *threadsIDs, Particle *particles){ 
 //calculate thread ID -- classic approach 
 //int tid = blockIdx.x * blockDim.x + threadIdx.x; 
 //obtain thread ID – proposed FPMB approach 
 int tidIndex = blockIdx.x * blockDim.x + threadIdx.x 
 int tid = threadsIDs[tidIndex]; 

 if(tid < PARTICLES_NUMBER) {
  parametersCorrection(&particles[tid]); 
  particles[tid].fitnessValue =  
              objectiveFunction(particles[tid]);
  findPersonalBest(particles); 
 }
}

The findGlobalBest updates the best particle of the swarm, and the im-
provedGB variable (to true or false if the fitness value for the best particle was or was
not improved at the current step). The generateTopology creates a new topology
(new connections between the swarm particles) if the global best value was not
improved at the current step. Based on the new topology, the findLocalBest cal-
culates the index of the local best for the neighborhood of each particle. The indexLB
data field is then used to establish whether the particle is the best particle in its
neighborhood, in order to choose the formula for determining the new particle’s
coordinates.

SPSO Parallelization Strategies for Electromagnetic Applications 83



__global__ void findLocalBest( 
            int *threadIDs, Particle *particles){ 
 //calculate thread ID -- classic approach 
 //int tid = blockIdx.x * blockDim.x + threadIdx.x; 

 //obtain thread ID – proposed FPMB approach
 int tidIndex = blockIdx.x * blockDim.x + threadIdx.x 
 int tid = threadsIDs[tidIndex]; 

 if(tid < PARTICLES_NUMBER) { 
  particles[tid].indexLB = tid; 
  for(int i = 0; i < PARTICLES_NUMBER; i++) { 
   if(particles[tid].neighbours[i] == 1) { 
    if(particles[i].fitnessValuePB 
     < particles[particles[tid].indexLB].fitnessValuePB) { 
     particles[tid].indexLB = i; 
    }
   }
  }
 }
}

4 SPSO Parallelization – Pthreads Approach

In shared memory multiprocessor architectures, threads can be used to implement
parallelism. POSIX Threads [25], usually referred as Pthreads, is a POSIX (Portable
Operating System Interface) standard for threads [26] which defines an API imple-
mented on many Unix like operating systems as Linux, Solaris, FreeBSD and MacOS.

In such operating systems, a process requires a significant amount of overhead,
containing information about program resources and program execution state: process
ID, user ID, environment, program instructions, registers, stack, heap, file descriptors,
signal actions, shared libraries, inter-process communication tools (message queues,
pipes, semaphores and shared memory), etc.

Unlike a process, a thread is an independent stream of instructions that can be
scheduled to run by the operating system. In a Unix environment, a thread exists within
a process, uses the process resources, and has its own independent flow of control.
A thread duplicates only the essential resources needed to be independently schedu-
lable: stack pointer, registers, scheduling properties (policy and priority), and set of
pending and blocked signals. Because most of the overhead has already been
accomplished through the creation of its process, a thread is lightweight when com-
pared to the cost of creating and managing a process, and can be created with much less
operating system overhead. Therefore managing threads requires fewer system
resources than managing processes.

When running in shared-memory model, each thread has access to its on private
data but also has access to the global (shared) memory. Because the threads belonging
to a process share their resources, changes of global resources made by one thread will
be seen by all threads. This is why the read /write operations to the same memory
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location require explicit synchronization, synchronization which can be implemented
using mechanisms as barriers and mutexes.

Comparing to other parallelization options for multi-processor architecture with
shared memory, like MPI or OpenMP, Pthreads was created to achieve optimum
performance [27]. While MPI [28] and OpenMP [29] are simpler parallelization
options (easier to use) requiring a smaller amount of work, Pthreads provides more
flexibility and it offers more control over the parallelization.

4.1 Existing Approaches

Just as in the CUDA case, there is a significant number of PSO parallel implementa-
tions based on the shared memory multiprocessor architectures. While the optimization
algorithms are used to solve a variety of applications most of the programs are based on
MPI and OpenMP because of the implementation simplicity [30–32].

In [33] the authors use a PSO OpenMP implementation to design a class E
amplifier. The speed up obtained by parallelization is up to 5 times. In [34] a MPI
implementation is used for solving the optimum capacity allocation of distributed
generation units and an 3 times acceleration is obtained comparing to the serial
implementation.

In [35] the authors make a comparison between a PSO CUDA implementation and
a PSO MPI implementation used to solve an optimization problem from the area of
power electronics. Both implementations are faster than the sequential PSO, the
GPGPU CUDA implementation being 32 times faster than the multiprocessor MPI
implementation.

In our opinion there is no single best parallel implementation strategy for the PSO
based algorithms. As we will see from our simulations results, the performances
depend on many factors as PSO parameters and especially the objective function to be
optimized and its implementation features (like the code complexity and the level of
branching).

4.2 Proposed POSIX Threads Implementation

Just as in the CUDA implementation, in the Pthreads case we implemented the
behavior of each particle in the swarm using a dedicated thread. The threads man-
agement is done explicitly. The threads are created and launched using
pthread_create library function. The function receives as parameters a reference
to the thread, thread attributes (NULL means defaults are applied), the function to be
executed by the thread, and the thread ID:
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pthread_t threads[PARTICLES_NUMBER];
int i, tid[PARTICLES_NUMBER];
...
for(i = 0; i < PARTICLES_NUMBER; i++) { 

tid[i] = i; 
pthread_create(&threads[i],NULL,&jobForOneThread,&tid[i])); 

}

After creation, each thread executes the code corresponding to the function
jobForOneThread. The function contains the SPSO main loop and performs the
basic operations: particle movement and evaluation, personal/global best calculation,
reset/generate new topology, and local best calculation:

void* jobForOneThread (void *params) {
int tid = *((int*)params); 
...
for(i = 0; i < SPSO_ITERATIONS_NUMBER; i++) {

moveEvaluateUpdatePersonalBest(tid); barrier(); 
findGlobalBest(tid); barrier(); 
generateTopology(tid); barrier(); 
findLocalBest(tid); barrier(); 

}
...

}

The variable passed to the SPSO basic functions is only the thread ID. The code of
these functions is the same as in the CUDA implementation. The variables varMin,
varMax, improvedGB, particles (which were passed as function parameters in the
CUDA implementation and were stored in the GPU device memory) are now global
variables stored in the host computer memory, all threads having access to them.

The particles synchronization (necessary after each operation) is achieved using a
barrier mechanism based on the pthread_barrier_wait library function:

void barrier() {
int rc = pthread_barrier_wait(&barr); 
if(rc != 0 && rc != PTHREAD_BARRIER_SERIAL_THREAD) { 

printf("Could not wait on barrier\n"); exit(-1);
}

}

The barr parameter is a variable of type pthread_barrier_t which contains
several data members as the current number of threads reaching the barrier, the size of
the barrier (the necessary number of threads to unlock the barrier), a mutex (for
exclusive access to data members), etc. The variable is defined and initialized before
the thread creation and execution using the pthread_barrier_init function:
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// Barrier initialization – before the thread creation loop 
pthread_barrier_t barr; 
if(pthread_barrier_init(&barr, NULL, PARTICLES_NUMBER)) {

printf("Could not init barrier\n"); exit(1);
}

5 Electromagnetic Problems

The parallel implementations were tested on two benchmark problems defined by the
computational electromagnetics community.

5.1 The TEAM22 Benchmark Problem

Two coaxial coils carry current with opposite directions (Fig. 4), operate under
superconducting conditions and offer the opportunity to store a significant amount of
energy in their magnetic fields, while keeping within certain limits the stray field [6].

An optimal design of the device should therefore couple the value of the energy
E to be stored by the system with a minimum stray field Bstray. The two objectives are
combined into one objective function:

OF ¼ B2
stray

B2
norm

þ E � Eref

�� ��
Eref

; B2
stray ¼

P22
i¼1 Bstray; i

�� ��2

22
ð11Þ

where Eref = 180 MJ, and Bnorm = 3 lT.

Fig. 4. TEAM22 problem configuration.
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The objective function has as parameters, the radii (R1, R2), the heights (h1, h2), the
thicknesses (d1, d2) and the current densities (J1, J2). Besides domain restrictions, the
problem must take into account the following conditions: the solenoids do not overlap
each other (R1 þ d1=2\R2 � d2=2), and the superconducting material should not
violate the quench condition that links together the value of the current density and the
maximum value of magnetic flux density (jJj � ð�6:4 � jBj þ 54:0Þ A�mm2). It is a
constrain imposed to the current densities.

The evaluation method of the objective function is based on the
Biot-Savart-Laplace formula in which the elliptic integrals are computed by using the
King algorithm and numerical integration. Moreover, the optimization problem is
reformulated as a one with six parameters, since for a given geometry and a stored
energy, the values of the current densities can be computed by deterministic quadratic
optimization as in [9].

5.2 The Loney’s Solenoid Problem

The Loney’s solenoid benchmark problem, formulated in [10] consists of a main coil
(Fig. 5), with given dimensions (r1 = 11 mm, r2 = 29 mm, h = 120 mm) and two
identical correction coils, having fixed radii (r3 = 30 mm, r4 = 36 mm). A constant
current flows through the coils such that they current density is the same. The aim is to
produce a constant magnetic flux density in the middle of the main coil. The parameters
to be optimized are the length of the correction coils (s) and the axial distance between
them (l).

The objective function is of minmax type, i.e. minimize the maximum difference
between the values of the magnetic flux density along a straight segment in the middle
of the main solenoid, i.e. minimize (Bmax − Bmin)/B0, where B0 is the magnetic field
density in the middle of the main coil (r = 0, z = 0). The maximum and minimum

main coil

correcting coils

-z0 z0

r1 r2 r3 r4

s l s

h

Fig. 5. Loney’s solenoid problem configuration.
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values are sought along the segment [−z0,z0], where z0 = 2.5 mm. Tests done by the
authors of this benchmark revealed that the problem is non convex and ill conditioned
[36]. The electromagnetic field problem is easily solved, in a magnetostatic regime, by
discretizing the coils in elementary coils without thickness and by applying well known
analytical formulas for the field along the solenoid axis.

6 Results

To solve the electromagnetic optimization problems two parallel SPSO implementa-
tions have been used, a multiple kernel CUDA implementation and a Pthreads
implementation. In both implementations one thread is mapped to one particle of the
swarm.

The objective functions for the TEAM 22 and Loney’s solenoid have sequential
implementations and they were written in C. For a given set of parameters, the eval-
uation of one objective function in case of TEAM22 problem consists in executing
hundreds of thousands of lines of code (thousands of subroutines calls) with a very
high level of branching, while in the case of Loney’s solenoid one evaluation consists
of hundreds lines of code with a lower level of branching.

The CUDA SPSO code was tested on a NVIDIA M2070 GPU with 448 cores,
compute capability 2.0 and 1.13 GHz core processors. The Pthreads SPSO code was
tested on a multiprocessor hardware architecture with two Intel Xeon X5650 CPUs
(2.67 GHz), each processor with 6 cores and each core being able to run in parallel 2
independent threads. In total only 12 threads can run in parallel at a time on the
multiprocessor architecture, significantly smaller than in the GPU case.

6.1 GPGPU Configurations

For the parallel GPGPU implementation three different configurations have been tested:
a full warp configuration (FW), a single thread per block configuration (ST), and a new
full parallel minimum branching configuration (FPMB).

The full warp configuration is a classic approach and has the main advantage the
optimal use of the GPU hardware resources per multiprocessor (no core is idle). For
this configuration the number of blocks equals the swarm size divided by 32. The main
problem of this approach is the highest level of branching from all configurations.

The second configuration has one thread in each block, with the number of blocks
being equal with the swarm size. The main advantage of the configuration is the
avoidance of branching, while the main problem is that not all the threads can run in
parallel in the same time, the limit being imposed by the number of the multiprocessors.

The third configuration, is the new FPMB configuration especially proposed for
problems affected by branching. The configuration distributes the threads between
blocks such as all the threads run in parallel in the same time while maintaining the
lowest possible branching level (from the configurations which run all threads in
parallel in the same time). The number of blocks equals the number of multiprocessors,
while the maximum number of threads per block depends on the swarm size, being
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equal to the number of particles divided to the number of blocks. Because in some
cases the number of particles can not be precisely divided to the number of blocks, as
the number of multiprocessors is hardware specific, some threads are invalidated, as
described in Sect. 3.

Tables 1 and 2 present the average execution time of the GPGPU – SPSO
implementation for 30 independent runs (tests), for each configuration, and for different
swarm sizes of the SPSO algorithm. For each run (test) the stop criteria was the
maximum iterations number corresponding to 2560 evaluations of the objective
function.

For the TEAM22 electromagnetic optimization problem the proposed FPMB out-
performs the FW configuration for each swarm size. When compared with the ST
configuration the FPMB approach is better only for small swarm sizes. The explanation
is that the TEAM22 objective function implementation is complex and when the swarm
size increases, the number of the threads per block in the FPMB configuration increases
and the branching significantly influences the performance.

For the Loney’s solenoid problem, the proposed FPMB configuration is the most
suitable approach outperforming all the other configurations for each swarm size. The
implementation of the objective function for Loney’s solenoid is less complex than in
the TEAM22 problem case, and as a result the increase of the swarm size (which means
the increase of the number of threads per block in the FPMB configuration) does not
lead to a high level of branching. Although the branching is present (the ST config-
uration performs similar with the FW configuration), it does not have a dramatic impact
over the performances of the FPMB configuration when the swarm size increases (as in
the case of TEAM22).

6.2 GPGPU vs. Pthreads

Tables 3 and 4 present the average execution time of the Pthreads – SPSO imple-
mentation for 30 independent runs (tests) for different swarm sizes. In the same time the

Table 1. Average execution times for TEAM 22 problem.

Swarm size (S) 32 64 128

GPGPU configuration FW (32 TpB) 491 s 312 s 179 s
FPMB (3/5/10 TpB) 278 s 233 s 163 s
ST (1TpB) 327 s 198 s 144 s

Table 2. Average execution times for Loney’s solenoid problem.

Swarm size 32 64 128

GPGPU configuration FW (32 TpB) 25 ms 16 ms 11 ms
FPMB (3/5/10 TpB) 16 ms 10 ms 6.5 ms
ST (1TpB) 21 ms 15 ms 10 ms
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tables present the best values obtained with the GPGPU – SPSO implementation, from
all three tested configurations. Just as in the GPGPU implementation case, for each run
(test) the stop criteria was the maximum iterations number corresponding to 2560
evaluations of the objective function.

For the TEAM 22 optimization problem the Pthreads implementation is faster than
the CUDA implementation for each swarm size. The speed up obtained for Pthreads
with respect to GPGPU implementation is from 9 times, in the case of 128 particles, to
17 times, in the case of 32 particles.

Even if in the CUDA case the number of threads running in parallel in the same
time is higher than in the Pthreads case, the Pthreads implementation is faster because
of the complexity of the TEAM22 objective function implementation (high level of
branching and large number of instructions). The main explanation is that the GPU
cores have lower clock rates, no branch prediction and no speculative execution
comparing with the multiprocessor cores.

For the Loney’s solenoid problem the situation is reversed, the CUDA imple-
mentation being the fastest. The speedup for GPGPU with respect to Pthreads imple-
mentation is from 4 times, when the swarm has 32 particles, to 10 times, when the
number of particles is 128. The explanation once again is related to the objective
function implementation, which in this case has a much lower number of instructions
and a lower branching level comparing with the TEAM22 case. The advantages of the
multiprocessor architecture (the higher clock rates, the bigger cache level, the branch
prediction, the speculative execution, etc.) can not compensate the disadvantage of the
larger number of threads running in parallel on the GPU architecture.

In terms of solution fitness (Tables 5 and 6) the results obtained with the parallel
Pthreads implementation are slightly better than those obtained with the CUDA code,
for both electromagnetic optimization problems. For both implementations the random
numbers necessary for the SPSO algorithm are generated at each step, on host in the
case of Pthreads and on device/GPU in the case of CUDA.

For the Loney’s solenoid problem the best performances are offered when the size
of the swarm is small (32 particles), for both implementations. For TEAM 22
benchmark problem the optimum swarm size is between 32 and 64 when Pthreads

Table 3. Average execution times for TEAM 22 problem.

Swarm size 32 64 128

Algorithm GPGPU – SPSO 278 s 198 s 144 s
Pthreads – SPSO 19 s 17 s 15 s

Table 4. Average execution times for Loney’s solenoid problem.

Swarm size 32 64 128

Algorithm GPGPU – SPSO 16 ms 10 ms 6.5 ms
Pthreads – SPSO 71 ms 79 ms 82 ms
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implementation is used, while for the CUDA implementation it does not seem to be an
optimal size (32 offers best solution, 64 best mean, 128 best standard deviation).

7 Conclusions

The present paper have studied two of the most popular parallelization techniques,
GPGPU and POSIX threads for multiprocessor architectures, for accelerating a SPSO
algorithm to solve optimization problems from electromagnetism. The aim of the paper
was to provide insights on what parallelization strategy should be adopted taking into
consideration the implementation features of the objective function. In order to achieve
this and find the most suitable approach, the SPSO parallel implementations have been
tested on two different electromagnetic problems: TEAM22 and Loney’s solenoid.
While TEAM22 has a complex implementation, with a high level of branching, and
needs a large number of subroutines calls for one evaluation of the objective function,
the Loney’s solenoid has a simpler implementation, with a low/medium level of
branching.

Firstly, several GPGPU configurations have been tested and compared, and a new
full parallel minimum branching (FPMB) implementation was proposed. The proposed
implementation proved to be the most efficient for problems with a less complex
implementation (such as Loney’s solenoid). In the same time the configuration is
suitable for problems with a more complex implementation (such as TEAM22) but
only when the number of particles is low.

Table 5. Objective function values and standard deviation for TEAM 22.

Algorithm Swarm
size

Min - best of
value

Max - best of
value

Mean - best of
value

Standard
deviation

GPGPU –

SPSO
32 3.15 E–3 17.40 E–3 6.49 E–3 3.89 E–3
64 3.53 E–3 11.30 E–3 5.83 E–3 2.16 E–3
128 3.37 E–3 9.11 E–3 6.37 E–3 1.74 E–3

Pthreads –
SPSO

32 3.06 E–3 8.46 E–3 5.21 E–3 1.47 E–3
64 3.34 E–3 8.09 E–3 5.22 E–3 1.23 E–3
128 3.75 E–3 12.24 E–3 6.89 E–3 1.93 E–3

Table 6 Objective function values and standard deviation for Loney’s solenoid.

Algorithm Swarm
size

Min - best of
value

Max - best of
value

Mean - best of
value

Standard
deviation

GPGPU –

SPSO
32 1.31 E–8 1.61 E–8 1.52 E–8 0.06 E–8
64 1.51 E–8 2.07 E–8 1.66 E–8 0.15 E–8
128 1.49 E–8 6.61 E–8 3.32 E-8 1.56 E–8

Pthreads –
SPSO

32 1.25 E–8 1.59 E–8 1.51 E–8 0.07 E–8
64 1.31 E–8 2.44 E–8 1.67 E–8 0.19 E–8
128 1.34 E–8 18.63 E–8 3.84 E–8 3.29 E–8

92 A. Duca et al.



Secondly, the best GPGPU results were compared with results provided by a
Pthreads implementation. For the TEAM22 benchmark the fastest approach has been
the implementation for multiprocessor architecture. The Pthreads implementation
outperformed the GPGPU CUDA based implementation up to 17 times. In the case of
Loney’s solenoid the fastest solution was the GPGPU implementation. The CUDA
based implementation running in a full parallel minimum branching configuration was
up to 10 times faster.

Regarding solution fitness, the best approach was the implementation based on
Pthreads, but the solutions supplied by the CUDA implementation are very close, the
difference being insignificant. A priori generation of the random numbers on host
machine, followed by a transfer to the GPU device, could further improve the solution
quality for CUDA implementation. In most cases, the best solutions have been
achieved for a small size of the particles swarm.

As we have shown, there is no single best parallelization method and the perfor-
mances dependent of the objective problem to be solved, and especially its imple-
mentation features such as level of branching, number of instructions, the necessary
number of subroutines calls, recursivity, etc. While for problems with complex
implementations (such as TEAM 22), the most efficient approach is based on Pthreads,
in the case of problems with a less complex implementation, like Loney’s solenoid, the
best approach is the GPGPU.
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Abstract. This paper addresses the problem of searching mines in an unknown
area and disarming them in a cooperative manner. We describe two bio-inspired
mechanisms that allow the robots to initiate the coordination with other robots
when a mine is discovered. We model this problem as a multi-objective
exploration and disarming problem. Specifically we propose a modified version
of the Ant Colony Optimization (ATS-RR) and the Firefly Algorithm (FTS-RR).
The proposed approaches have been implemented and evaluated in several
simulated environments varying the parameter of the problems in term of team
sizes, the number of mines disseminated in the area, the dimension of area. Our
approaches have been implemented in simulation environments and have been
compared with Particle Swarm Optimization (PSO). The results demonstrate the
efficiency of the FTS-RR over others.

Keywords: Swarm intelligence � Bio-inspired algorithm �Multi-robot system �
Coordination

1 Introduction

In the past new years, the attention of researchers fovuses on the idea of creating groups
of mobile robots that are able to collaborate in order to accomplish one or more
predefined tasks such as aerial surveillance and reconnaissance, unmanned search and
rescue, exploration and so on. Multi-robot systems can provide improved performance,
fault-tolerance and robustness in those tasks through parallelism and redundancy. The
key issue concerning collective robotics is how to specify the rules of behavior and
interaction at the level of individual robots such that coordination can be achieved
automatically at the global level. This is called the coordination problem [1, 2].

A central aspect of the coordination of the swarm is to ensure that the robots are
distributed in efficient manner into the area in order to ensure rapid and efficient
completion of the tasks.

Swarm robotics is a new approach to the coordination of large numbers of relatively
simple robots. The approach takes its inspiration from the system-level functioning of
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social insects which demonstrate three desired characteristics for multi-robot systems:
robustness, flexibility and scalability [3].

Algorithms in swarm robotics mostly rely on cooperation and simple interactions
between robots, rather than on complex individual behaviours that require powerful
sensory capabilities. Several researchers have developed simple information sharing
techniques for multi-robot systems using simple, nature inspired models such as stig-
mergy to enable coordination among the robots in dynamic environments [24].

In this paper, we address a problem of the coordination of a swarm of robots. We
consider a situation where a swarm of mobile robots is deployed in an unknown, mined
area where some mines are disseminated at an unknown locations. The objective is to
explore overall area trying to distribute the robots in the different locations in order to
minimize the exploration time and the time to disarm all mines and the number of
accesses in the cells.

The exploration strategy has been investigated in previous work [4] here we are
interested to investigate the coordination strategy for disarming the mines in better way.
Since a mine needs to be disarmed by a certain number of robots, there is an issue on
how the robots inform the swarm about the mines and try to recruit the necessary
number of robots so as to disarm the mine safely. The robots that receive more
recruitment requests need to decide which location that robot will go to. The question
we address is how this can be done efficiently in a distributed way.

For this problem we propose two bio- inspired strategies. The first is based on
indirect communication through pheromone based on inspiration from the Ant Colony
Optimization; when a robot detect a mine it sprays some pheromone, like the ant in
nature, at certain distance, the other robots that sense the substance are attracted and try
to reach the mine locations following this scent.

The second mechanism is based on the explicit communication of structured
information. When a mine is detected, the robot, becomes like a firefly, sends the
information about its location to the others in the wireless range; the robots try to reach
the location according to the Firefly algorithm. If a robot receives more than one
request it chooses the best firefly that is the firefly at minimum distance.

We compare both mechanisms in terms of their efficiency, evaluating the perfor-
mance in comparison with the well-known PSO.

In our collective construction task, there are some mines randomly distributed in an
unknown area. The robots should first search for these mines individually, but for the
disarming task, multiple robots needed to work together. The problem is not a pure
exploration: on the one hand, it is required for robots to cover as much area as possible
in the minimum amount of time, avoiding any overlapping area. On the other hand, the
problem needs to allocate more robots in the same area to disarm a mine. The problem
is a bi-objective optimization problem where robots have to make decisions whether to
explore the area or to help other robots to disarm the detected mines.

Because the problem of the unknown lands with the constraint to disarm mine is a
NP hard problem, we proposed a combined approach using two bio-inspired
meta-heuristic approaches such as Ant Colony Optimization (ACO) and Firefly algo-
rithm (FA) to perform the coordination task among robots.

Basically, each robot consists of two phases during the task: searching and dis-
arming. When there is no detected mine, the robot status should be in the searching
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phase, where robots are exploring the area and searching for mines, taking into account
the quantity of pheromone perceived in the cells. Once mine is detected either by the
robot itself or by its neighbours, the robot status should be switched to the disarming
phase, under specific conditions. The strategy for the exploration task is designed
according to the main ideas of the ant system [5]. While the robots navigate, they
deposit a specific substance, the pheromone (the analogue of the pheromone in bio-
logical ant systems), into the environment. At each time/iteration, each robot receives
information from the pheromone and makes a navigation decision: it chooses the area
in which it perceives a less quantity of pheromone because this area has a greater
probability to be unexplored [4, 6]. The algorithm for exploration has been previously
validated and this paper presents the analysis of the recruiting strategies in order to
disarm the mines. The first is based on the exploration strategy and uses the pheromone
to attract the robots in the area where the mine is placed. The second strategy is based
on the new recent bio-inspired technique called Firefly Algorithm (FA) where the
robots that detect the mines become the fireflies and try to attract the other robots
according to a certain formula [7–9] These strategies were compared to the well known
Particle Swarm Optimization in order to evaluate the better coordination mechanism for
this problem. This contribution can be effective because the recruiting strategy can
affect the exploration task and the overall bi-objective exploring and recruiting tasks.

The paper is organized as follows. Section 2 introduces the related work. Section 3
present the problem statement. In Sect. 4 we present the distributed cooperative
algorithms for a multi-robot disarming task. Section 5 presents the simulation results
using a java-based platform. To conclude the paper, Sect. 6 outlines the main research
conclusions and discusses topics for future work.

2 Related Work

Multi-robot exploration has received much attention in the research community. Swarm
robotic searching algorithm is one of the most concerns of the researchers for solving
those basic tasks. The swarm intelligence shows a great ability in scalability, flexibility
and robustness and it is suitable for real life applications with the aid of various existing
strategies. Within the context of swarm robotics, most work on cooperative exploration
is based on biologically behaviour and indirect stigmergic communication (rather than
on local information, which can be applied to systems related to GPS, maps, wireless
communications). This approach is typically inspired by the behaviour of certain types
of animals, like the ants, that use chemical substances known as pheromone to induce
behavioural changes in other members of the same species [10–14].

Other authors experimented with chemical pheromone traces, e.g. using alcohol
[15] or using a special phosphorescent glowing paint [16]. Another approach is the
pheromone robotics where robots spread out over an area and indicate the direction to a
goal robot using infrared communication [17]. In our approach, during the exploration
the robots sign/mark the crossed cell through the scent that can be detected by the other
robots; the robots choose the cell that has the lowest quantity of substance to allow the
exploration of the unvisited cells in order to cover the overall area in less time [4, 6].
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The self-organizing properties of animal swarms such as insects have been studied
for better understanding of the underlying concept of decentralized decision-making in
nature, but it also gave a new approach in applications to multi-agent systems engi-
neering and robotics. Bio-inspired approaches have been proposed for multi-robot
division of labour in applications such as exploration and path formation, or cooper-
ative transport and prey retrieval. Within the context of swarm robotics, most work on
cooperative tasks is based on social behaviour like Ant Colony Optimization [5, 18]
Particle Swarm Optimization [19–21] Bee Algorithm [22].

For sharing information and accomplishing the tasks there are, basically, three ways
of information sharing in the swarm: direct communication (wireless, GPS), commu-
nication through environment (stigmergy) and sensing. More than one type of inter-
action can be used in one swarm, for instance, each robot senses the environment and
communicates with their neighbour. Balch [23] discussed the influences of three types
of communications on the swarm performance and Tan [3] presents an accurate analysis
of the different type of communication and the impact in the behaviour of swarm.

In this paper, we have considered the spatial and temporal dispersion of the
pheromone to make the scenario more realistic [4]. While walking, the robots leave
pheromone, which marks the cells they took. This chemical substance can be detected
by other robots. After a while, the concentration of pheromone decreases due to the
evaporation and diffusion associated with the distance and with the time; in this way we
can allow continuous coverage of an area via implicit coordination. The other robots,
through proper sensors, smell the scent in the environment and move in the direction
with a minimum amount of pheromone that corresponds to an area less occupied and
probably an unexplored area. On the other hand, in order to deactivate the mines, the
first robot that detects a mine (recruiter) in a cell, sprays another scent, different from
the pheromone used for the exploration, perceived by the robots; in this case the robots
move into the cells with a higher concentration of pheromone and reach the area where
to deactivate the mines. In this attraction strategy of the recruiter, another recent and
novel bio-inspired approach inspired by other insects such as fireflies has been
investigated in this work so as to see the effectiveness of the algorithm and potential use
of different insect behaviour on the robot coordination task and their performance. The
algorithm inspired by fireflies is called Firefly algorithm (FA).

3 Problem Definition

We consider an environment assuming that it is discretized into equally spaced cells
that contains a certain number of mines. Each cell has the potential to consider three
states: free, occupied by mine, occupied by robot. Robots can move among cells and
they can have just local information about robots (neighbors) or regions to explore
(neighbor cells) in order to provide a scalable strategy. The considered scenario is
presented under this assumption:

1. The search space is unknown a priori by the agents.
2. A task corresponds to a mine detection and disarm a mine. The distribution of the

mines that need to be disarmed by agents is not known.
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3. A single robot is only capable of discovering and partially executing tasks; the
disarming task can be completed only if multiple agents work together.

4. To recruit the other agents required to complete a task, an agent that discovers a
mine communicates to the others, this communication has to be done in a dis-
tributed manner without using a central location or shared memory to facilitate
information exchange among agents.

5. The robots are equipped with proper sensors that are able to deposit and smell the
chemical substances (pheromones) leaved by the other robots; for exploration task
they make probabilistic decision based on amount of pheromone in the cells. The
exploration strategy is the same for the recruiting strategies.

6. The robots are equipped with proper sensors to detect the mines.
7. The robots can move on a cell-by-cell basis to explore new cells or to go towards

the mine.

The robots during the exploration can spray a scent (pheromone) into the cells to
support the navigation of the others. In the algorithm, the robots decide the direction of
the movement relying on a probabilistic law inherited by swarm intelligence and swarm
robotics techniques. The scent evaporates not only due to diffusion effects in the time,
but also in the space according to the distance; this allows a higher concentration of
scent in the cell where the robot is moving and a lower concentration depending on the
distance [4].

Let M be the matrix of size m � n representing the unknown area of size
m � n. Let Mði; jÞ be a cell in the matrix with row i and column j. Let z be the number
of mines on a set MS to distribute on the grid in a random fashion (e.g., it is applied a
uniform distribution on X and Y axes). TheMS set is characterized by the coordinates of
the mines. For example, MS ¼ 3; 4ð Þ; 5; 10ð Þ; 7; 12ð Þgf indicates that there are 3 mines
in the area with the coordinates (3, 4), (5, 10) and (7, 12). The robots can be placed on
the same initial cell or can be randomly distributed on the grid area. It is assumed that
each robot in a cell M(i,j) can move just in the neighbor cells through discrete
movements. Let te be the time necessary for a robot to consider a cell, and let td be the
time necessary to disarm a mine once it has been detected. It is assumed that a fixed
number of robots (rdmin) are necessary to disarm a mine; this means that for the
exploration task robots can be distributed among the area because each robot can
independently explore the cells, whereas for the mine detection, more robots need to be
recruited in order to perform the task. xij is a variable representing the number of robots
(accesses) that passed through the cell (i,j).

For the problem, we define an bi-objective function as both the time to detect and
the disarming the mine through the exploration on the overall grid.

min
X

teþ
Xz

k¼0
td;k

� �
andmin

Xm

i¼1

Xn

j¼1
xij ð1Þ

subject to

Xm

i¼1

Xn

j¼1

xij � 1i ¼ 1. . .m; j ¼ 1. . .n with i; jð Þ 2 M
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Xm

i¼1

Xn

j¼1

xij � rdmin with i; jð Þ 2 MS

The law used by the robots to choose the cells during the movements is presented
below [4].

We consider a robot in a cell s and it will attribute to the set of next cells vi
following a probability as:

p vijsð Þ ¼ svi;t
� �u� gvi;t

� �#
P

i2N sð Þ svi;t
� �u� gvi;t

� �# ; 8 vi 2 N sð Þ ð2Þ

where (p(vi|s) represents the probability that the robot, that is in the cell s, chooses the
cell vi; N(s) is the set of neighbors to the cells, svi,t is the amount of pheromone in the
cell vi; ɳyi,t is the heuristic parameter introduced to make the model more realistic. In
addition, u and h are two parameters which affect respectively the pheromone and
heuristic values.

Taking into account the spatial dispersion of the scent and the temporal dispersion
in the amount of pheromone in the cell v where the robot will move during the
exploration is:

sv;tþ 1 dð Þ ¼ sv;t þ svðdÞ ð3Þ

In order to explore different areas of the environments, the robots choose the cell
with a minimum amount of pheromone, corresponding to cells that probably are less
frequented and therefore not explored cells. The chosen cell will be selected according
with Eq. (2):

vnext ¼ min pðvijsÞ½ � 8 vi 2 NðsÞ ð4Þ

4 Coordination Methods to Disarming Task

4.1 Ant-based Based Team Strategy for Robots Recruitment (ATS-RR)

To realize the coordination mechanism in our system, we use the stigmergetic activity
of social insects such as ants [25]. Stigmergy is a reinforcement learning mechanism
that reinforces solutions in a solution space (for e.g. food for ants searching for food)
with a chemical substance called pheromone. Pheromone provides positive reinforce-
ment to future ants, and, ants searching for the food later on get attracted to the
pheromone to locate and possibly consume the food. In our system, when a robot
detects a mine, it deposits a certain amount of synthetic pheromone to mark the mine’s
location, this scent spreads into the environment and it is perceived, at certain distances,
by other robots of the swarm.

In our problem we assume that the robots are equipped with sensor that perceived a
pheromone, different by the pheromone used for the exploration. The robots commun-
icate with others through the environment (indirect communication). We considered
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that the mine disarming time is equal to the total evaporation time of substance (scent);
in this way when the mine is disarmed, the robots involved in this operation will not be
affected by scent trails (Fig. 1).

We assume t is the time in which the robot r detected a mine and it deposits the
substance. The robot r continues to spray until all necessary robots reach its position.

If m is the time needed to disarm the mine, the law for the evaporation of the scent
is the following:

ntþ 1 ¼ nt �
1
m
nt0 ð5Þ

where ft0 is the substance sprayed when the robot detects a mine. At the beginning
ft ¼ ft0 .

In this way after m steps f should be zero so the scent will not affect any more the
movement of the other robots. This assures that all robots will cover other new space
and disarm other mines completing the task in an efficient and distributed manner.

4.2 Firefly Based Team Strategy for Robots Recruitment (FTS-RR)

Firefly Algorithm (FA) is a nature-inspired stochastic global optimization method that
was developed by Yang [7, 8]. The FA tries to mimic the flashing behavior of swarms
of fireflies. In the FA algorithm, the two important issues are the variation of light
intensity and the formulation of attractiveness. The brightness of a firefly is determined
by the landscape of the object function. Attractiveness is proportional to brightness and,
thus, for any two flashing fireflies, the less bright one move towards the brighter one.
The light intensity decays with the square of the distance, the fireflies have limited
visibility to other fireflies. This plays an important role in the communication of the
fireflies and the attractiveness, which may be impaired by the distance. Some simpli-
fications are assumed such as:

(a) it is assumed that all fireflies are unisex so they will be attracted to each other
regardless of their sex;

(b) the attractiveness is proportional to their brightness and they both decrease as the
distance increases;

Fig. 1. ATS-RR Strategy. The robots that detect a mine during their movements spray some
pheromone perceived at a certain distance by others.
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(c) in the case of no existence of no brighter firefly on then, the fireflies will move
randomly;

(d) the brightness of firefly is affected by its fitness.

The distance between any two fireflies i and j, at positions Xi and Xj, respectively,
can be defined as the Cartesian or Euclidean distance as follows:

rij ¼ Xi � Xj

�� �� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD

k¼1
Xi;k � Xj;k
� 	2

r
ð6Þ

where Xi,k is the k-th component of the spatial coordinate Xi of the i-th firefly and D is
the number of dimensions.

In the firefly algorithm, as the attractiveness function of a firefly j, one should select
any monotonically decreasing function of the distance to the chosen firefly, e.g., the
exponential function:

b ¼ b0e
�cr2ij ð7Þ

where rij is the distance defined as in Eq. (6), b0 is the initial attractiveness at r0, and c
is an absorption coefficient at the source which controls the decrease of the light
intensity.

The movement of a firefly i which is attracted by a more attractive (i.e., brighter)
firefly j is governed by the following evolution equation:

xi ¼ xi þ b0e
�cr2ij xi � xj

� 	þ a r� 1
2


 �
ð8Þ

where the first term on the right-hand side is the current position of the firefly, in our
case a mine, the second term is used for considering the attractiveness of the firefly to
light intensity seen by adjacent fireflies, and the third term is used for the random
movement of a firefly in case there are not any brighter ones. The coefficient a is a
randomization parameter determined by the problem of interest, while r is a random
number generator uniformly distributed in the space [0, 1].

Furthermore, we look at Eq. (8), thus this non linear equation provides much richer
characteristics. Firstly, if c is very large, then attractiveness decreases too quickly, this
means that the second term in (8) becomes negligible, leading to the standard simulated
annealing (SA). Secondly, if c is very small (i.e. c ! 0), then the exponential factor

e�cr2ij ! 1 and FA reduces to a variant of particle swarm optimization (PSO). In addition,
the randomization term can be extended to other distributions such as Lévy flight.
Furthermore, FA uses a non linear updating equation, which can produce rich behavior
and higher convergence than linear updating equation used for example in standard PSO.
Regarding the parameters setting, parametric studies suggest that b0 = 1 can be used for
most application; c should related to the scaling L. In general, we can set c ¼ 1

L [9].
The Firefly Algorithm has been proved very efficient and it has three key advan-

tages [9]:

Bio-inspired Strategies for the Coordination of a Swarm 103



• Automatic subdivision of the whole population into subgroups so that each sub-
group can swarm around a local mode. Among all the local modes, there exists the
global optimality. Therefore, FA can deal with multimodal optimization naturally.

• FA has the novel attraction mechanism among its multiple agents and this attraction
can speed up the convergence. The attractiveness term is nonlinear, and thus may be
richer in terms of dynamical characteristics.

• FA can include PSO, DE, and SA as its special cases. Therefore, FA can efficiently
deal with a diverse range of optimization problems.

For our disarming task when a robot finds a mine, during the exploration task, it
becomes a recruiter (firefly) of the other robots in order to disarm the mine and it tries
to attract the other robots on the basis of the mine position.

In this case, the robots are assumed to have transmitters and receivers, using which
they can communicate messages to each other. The messages are mostly coordinate
positions of the detected mines. However, the robots are assumed to be able to
broadcast messages in their wireless range; in this way, a robot can transmits its
position only to its neighbours directly and there is not propagation of the messages
(one hop communication).

The original version of FA is applied in the continuous space [7], and cannot be
applied directly to tackle discrete problem, so we modified the algorithm in order to fit
with our problem. In our case, a robot can move in a discrete space because it can go
just in the contiguous cells step-by-step. This means that when a robot perceives, in its
wireless range, the presence of a firefly (the recruiter robot) and it is in a cell with
coordinates xi and yi, it can move according with the FA attraction rules such as
expressed below:

xtþ 1
i ¼ xti þ boe

cr2ij xj � xi
� 	þ a r� 1

2

� 	

ytþ 1
i ¼ yti þ boe

cr2ij yj � yi
� 	þ aðr� 1

2Þ

( )
ð9Þ

where xj and yj represent the coordinates of detected mine translated in terms of row
and column of the matrix area, rij is the Euclidean distance between mine (or firefly)
according to the Eq. (6) and the robot that moves towards the mine. The robots
movements are conditioned by mine (firefly) position, in the second term of the for-
mula, and it depends on attractiveness of the firefly such as expressed in Eq. (7) and by
a random component in the third term of Eq. (8). The coefficient a is a randomization
parameter determined by a problem of interest. The r coefficient is a random number
generator uniformly distributed in the space [0, 1] and it is useful to avoid that more
robots go towards the same mine if more robots are recruited by the same firefly and
enabling to the algorithm to jump out of any local optimum (Fig. 2). In order to modify
the FA to a discrete version, the robot movements have been considered through three
possible value updates for each coordinates: {−1, 0, 1} according to the following
condition:
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xtþ 1
i ¼ xti þ 1 if boe

cr2ij xj � xi
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2

� 	
[ 0
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xtþ 1
i ¼ xti � 1 if boe

cr2ij xj � xi
� 	þ a r� 1

2

� 	
\0

h i

xtþ 1
i ¼ xti þ 0 if boe

cr2ij xj � xi
� 	þ a r� 1

2

� 	 ¼ 0
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8
>>><

>>>:

9
>>>=

>>>;
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ytþ 1
i ¼ yti þ 1 if boe

cr2ij yj � yi
� 	þ a r� 1

2

� 	
[ 0

h i

ytþ 1
i ¼ yti � 1 if boe

cr2ij yj � yi
� 	þ a r� 1

2

� 	
\0

h i

ytþ 1
i ¼ yti þ 0 if boe

cr2ij yj � yi
� 	þ a r� 1

2

� 	 ¼ 0
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8
>>><

>>>:

9
>>>=

>>>;
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A robot r, that stores in the cell (xi, yi) as depicted in Fig. 3, can move in eight
possible cells according with the three possible values attributed to xi and yi. For example
if the result of the Eqs. (10–11) is (−1, 1) the robot will move in the cell (xi − 1, yi + 1).

In the described problem, the firefly algorithm is executed as follows:

• Step 1: Get the list of the detected mines (fireflies) and initialize algorithm’s
parameters: z number of fireflies, the attractiveness coefficient b0, the light
absorption coefficient c, randomization parameter a.

• Step 2: Get the list of the robots in the wireless range of the fireflies.

Fig. 2. FTS-RR Strategy: two robots during the exploration receive more recruiting requests
because they are in an overlapped area. The FA tries to coordinate the robots in the disarming
task avoiding that more robots go towards the same cells.

Fig. 3. Possible movement for a robot r stores in a cell (xi, yi).
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• Step 3: For each robot calculate the distance rij from the fireflies in its range using
the Euclidian distance.

• Step 4: For each robot find the firefly at minimum distance (the best firefly) and try
to move the robot from its location to the location of the best firefly according to the
Eqs. (10)–(11).

• Step 5: Terminate if the all detected mines are disarmed.

This steps are executed when the robots is recruited by others, indeed when no
fireflies are detected or if the new location of the robots is outside of the wireless range
of the fireflies, the robots explore in independent manner the area according the Eq. (2).
This happens because the nature of the problem is bi-objective and the robots have to
balance the two tasks.

5 Performance Evaluation and Comparison

In this section, we evaluate the performance of the two proposed algorithms in com-
parison with the well known PSO.

To highlight the performance benefits, we use random positions of the mines and
the robots in the area, varying the number of robots operating in the 2-D, the size of
grid map and the number of robots needed to disarm a mine, in order to study per-
formance and scalability of the proposed algorithms (Table 1).

Each of the numerical experiments was repeated 50 times in order to perform a
statistical analysis of the results. Specific FTS-RR parameters were set as follows:
b = 1; a = 0.2; ϒ = 1/L where L is max{m, n} where m and n are the numbers of rows
and columns of the matrix M, respectively. For the ATS-RR, the parameter values were
set as follow: u = 1, h = 1; ɳ = 0.9.

Experiment setup was created to check the influence of the disarming strategies in
solutions evaluation the relative error measured defined as the follow. We definePm

i¼1

Pn
j¼1 xij as the total number of accesses in the cell in one experiment.

x�ij is the optimum value.
This means that if we have a grid area of m � n with z mines and k is the minimum

number of robots that needs to disarm a mine, we have:

Table 1. Parameters for each experimental setup.

Grid size Swarm size Number of
mines

Number of robots needed to
disarm a mine

Scenario 1 30 � 30 20 40 60 80 100 5 4 5 6
Scenario 2 40 � 40 20 40 60 80 100 8 4 5 6
Scenario 3 50 � 50 20 40 60 80 100 12 4 5 6
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x�ij ¼ m � nð Þ � zþ k � z ð12Þ

In the best final configuration of the swarm in the area we want to have one access
in all cell of the grid area and k accesses in the cells where the mines are located.

We define the relative error as follows:

Erel ¼
Pm

i¼1

Pn
j¼1 xij

� �
� x�ij

���
���

x�ij
ð13Þ

The best strategy has the smallest Erel.

The optimum value depends on the dimension of grid, the number of mines dis-
seminated in the area and the minimum number of robot needed to disarm a mine.

The effectiveness of the algorithms in terms of relative error is shown in Figs. 4, 5
and 6. The results show that the relative error decreases for a larger swarm. It should be
noticed that the coordination of the robots and the distribution of the robots in the cells
of the area depend on the number of robots needed to disarm a mine considering the
same area at the same number of disseminated mines. Increasing the number of robots
needed to disarm a mine the recruiting task is more complex and the robots pass more
time in the same cell in order to reach the mines location.

The difference of the three strategies in terms of relative error is high, especially,
when the size of swarm in the operative area is low and tends to be comparable when
the number of robots increases.

When the complexity of the task increases Figs. 3(c), 4(c) and 5(c) it is possible
that more robots in an overlapped region that is more robots receive the same request,
go towards the same mine, passing more time in the same cells in the area creating, a
not necessary redundancy.

However, in all cases the FTS-RR exhibits superior performance because this
strategy is able to distribute better the robots in the area especially in comparison with
the ATS-RR. Regarding the difference between the FTS-RR and PSO; in the Firefly
based strategy the measure of the relative error is comparable and not significant
difference when the number of robots to coordinate is low. Instead, increasing the
number of robots and the mines the FTS-RR has the smallest relative error. This
demonstrates that applying the same exploration strategy the disarming technique
affects significantly the final distribution of the robots in the mission area.
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Fig. 4. Relative error comparison in a grid area 30 � 30 and 5 mines to disarm. (a) 4 robots
needed to disarm a min. (b) 5 robots needed to disarm a mine. (c) 6 robots needed to disarm a
mine.
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Fig. 5. Relative error comparison in a grid area 40 � 40 and 8 mines to disarm. (a) 4 robots
needed to disarm a mine. (b) 5 robots needed to disarm a mine. (c) 6 robots needed to disarm a
mine.
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6 Conclusions

Swarm intelligence based algorithms are very efficient in solving a wide range of
optimization problems in diverse applications in science and engineering.

Fig. 6. Relative error comparison in a grid area 50 � 50 and 12 mines to disarm. (a) 4 robots
needed to disarm a min. (b) 5 robots needed to disarm a mine. (c) 6 robots needed to disarm a
mine.
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In this article, its application for a recruiting task in a swarm of mobile robots is
investigated using Firefly Algorithm and Ant Colony Optimization.

The quality of solution is analyzed using a defined performance metric, which in
our case was a relative error referred to the number of accesses in the cells that gives a
measure about how the distribution of the robots in the area is efficient.

Our experiments through simulation showed that applying the FTS-RR the relative
error is lower than the other two strategies. In particular the results demonstrate that the
relative error applied to the total number of accesses is higher for the stigmergic
approach, especially, when the number of robots needed to disarm a mine increases.
The PSO and the FTS-RR methods are comparable when the task is not complex, but
the difference is evident when the coordination task requires more requests of
recruitment.

Future work will consider the continuous movement of the robots in the area of
interest. In addition, we will introduce obstacles in the area and dropping wireless
connection.
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Abstract. In this paper, we propose a hybrid approach to solving multi-
class problems which combines evolutionary computation with elements
of traditional machine learning. The method, Grammatical Evolution
Machine Learning (GEML) adapts machine learning concepts from deci-
sion tree learning and clustering methods and integrates these into a
Grammatical Evolution framework. We investigate the effectiveness of
GEML on several supervised, semi-supervised and unsupervised multi-
class problems and demonstrate its competitive performance when com-
pared with several well known machine learning algorithms. The GEML
framework evolves human readable solutions which provide an explana-
tion of the logic behind its classification decisions, offering a significant
advantage over existing paradigms for unsupervised and semi-supervised
learning. In addition we also examine the possibility of improving the
performance of the algorithm through the application of several ensem-
ble techniques.

Keywords: Multi-class classification · Grammatical evolution · Evolu-
tionary computation · Machine learning

1 Introduction

Evolutionary algorithms (EAs) are algorithms which are inspired by biological
evolution and which are constructed to emulate aspects of evolution, such as
genetic mutation and recombination and the notion of natural selection. Genetic
Programming (GP) [29] is an evolutionary algorithm which has been successful
on a wide range of problems from various diverse domains [19], achieving many
human competitive results [4]. However, a significant proportion of previous work
has concentrated on supervised learning tasks and, aside from some notable
exceptions, studies on unsupervised and semi-supervised learning have been left
to the wider machine learning (ML) community.

Two of the most important problems types which benefit from the application
of ML techniques are regression and classification, and GP has proven itself as an
effective learner on each of these: achieving particularly competitive results on
symbolic regression and binary classification tasks. Although many studies have
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been undertaken, multi-class classification (MCC) remains a problem which is
considered challenging for traditional tree based GP [11].

While we are concerned with multi-class classification generally, an impor-
tant motivation for the current investigation is the requirement for an algorithm
which can be applied to multi-class grouping/categorisation tasks involving both
labelled and unlabelled inputs from the medical domain, where the unsupervised
algorithm must be able to supply human interpretable justification for categori-
sation decisions.

Clustering is a natural choice for this type of task, but standard clustering
algorithms generally fail to satisfy the requirement of providing the reasoning
behind cluster allocations in a human readable form. In the medical domain, it
is usually important that the learner has the capability to provide human under-
standable explanations of its decisions so that human experts can have confidence
in the system. In this respect, decision trees (DTs) have the attractive property
that the induced DT itself provides an easily comprehensible explanation of all
decisions. Unfortunately, traditional DTs rely on ground truth information to
make decisions and use of this information is not permissible in an unsuper-
vised context. For these reasons, although each of these methods have attractive
properties, we conclude that neither DTs nor clustering approaches are, in their
normal mode of use, appropriate for unsupervised categorisation tasks which
require an explanation from the learner.

Although there is some important existing work in the area of unsupervised
classification in the medical domain, including for example [6,22,32], the sub-
ject remains relatively unexplored. This paper takes up a triple challenge: it
investigates MCC in a supervised, semi-supervised as well as in an unsupervised
context.

We hypothesise that it may be possible to combine the desirable qualities
of both algorithms by taking the underlying concepts and wrapping them in an
evolutionary framework – specifically a grammatical evolution (GE) [40] frame-
work. This approach is appealing due to its symbiotic nature: a GE grammar is
used to generate human readable decision tree like solutions and the evolution-
ary process is applied to the task of optimising the resulting cluster assignments
– thus emulating both the decision making behaviour of DTs and the iterative
operation of traditional clustering approaches. Not only does GE produce human
readable solutions, but it has been shown [3] that the paradigm seems to be able
to avoid bloated, over-complex ones.

While we can hypothesise that this hybrid approach might be a good idea,
objective evaluation of algorithm performance is required before concluding that
the resulting models are likely to be of any practical use. One approach to accom-
plishing this is to compare results of the hybrid method with other unsupervised
algorithms using some common metric of cluster performance. However, it could
be argued that without ground truth information any method of comparison is
flawed. Another possible approach for evaluating the effectiveness of the pro-
posed method would be to apply it to data about which something is already
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known, where that knowledge is not used in the learning process for the purpose
of evaluating and comparing performance afterwards.

Considering our original objective, we were also interested in learning about
potential performance differences may expected between our unsupervised sys-
tem and, supervised and semi-supervised approaches using the same data. Thus,
we choose to construct this study such that it would be possible to compare the
performance and behaviour of the hybrid unsupervised learner with another state
of the art unsupervised algorithm as well as with supervised and semi-supervised
learners on the same data. Rather than using our original medical dataset at this
point, we chose to carry out this first study using controllable synthetic data as
outlined in Sect. 4.2, with the intention of optimising the GEML system based
on lessons learned, if results of these preliminary experiments prove encourag-
ing. Once optimised, the system can be applied to the more challenging medical
datasets in the future.

In this work, we investigate the hypothesis that combining ML concepts
with GE can facilitate the development of a new hybrid algorithm with three
important properties: the ability to learn multi-class problems in both supervised
and unsupervised environments, and the capability of producing human readable
results. However, due to the way in which we have designed the experiments
– so that meaningful evaluation of the proposed algorithm would be possible,
the resulting system delivers much more than initially planned – functioning in
supervised, unsupervised and semi-supervised domains.

In summary, we investigate a hybrid GE system which incorporates ideas
from two well known ML techniques: decision tree learning which is often applied
to supervised tasks, and clustering methods which are commonly used for unsu-
pervised learning tasks. The proposed system which we call GEML is applied to
supervised, unsupervised and semi-supervised MCC problems. Its performance
is compared with several state of the art algorithms and is shown to outper-
form its ML counterparts and to be competitive with the best performing ML
algorithm, on the datasets studied.

In this work we extend and describe in greater detail, the GEML framework
as previously proposed in [17]. In the remainder of this section we will briefly
explain some of the concepts employed.

1.1 Clustering

Clustering involves the categorisation of a set of samples into groups or subsets
called clusters, such that samples allocated to the same cluster are similar in
some way. There are various types of clustering algorithms capable of generating
different types of cluster arrangements, such as flat or hierarchical clustering.
One of the best known clustering algorithms is K-means clustering which works
in an iterative fashion by creating a number of centroids (aspirationally clus-
ter centres). The algorithm groups samples depending on their proximity to
these centres and then measuring the distance between the data and the near-
est centroids – K-means iteratively minimises the sum of squared distances by
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changing the centroid in each iteration and reassigning samples to possibly dif-
ferent groups. Of the EC work in the existing literature which combines GP or
GE with unsupervised methods, K-means is the most popular of those used, as
is outlined in Sect. 2.

1.2 Decision Tree Learning

A decision tree is a hierarchical model that can be used for decision-making.
The tree is composed of internal decision nodes and terminal leaf nodes. In the
case of classification for example, internal decision nodes represent attributes,
whereas the leaf nodes represent an assigned class label. Directed edges connect
the various nodes forming a hierarchical, tree-like structure. Each outgoing edge
from an internal node corresponds to a value or a range of values of the attribute
represented by that particular node. Tree construction is a filtering and refin-
ing process which aims to gradually separate samples into the various classes
with possibly multiple routes through the decision process for a particular class
assignment.

1.3 Unsupervised, Semi-supervised and Supervised Learning

In simple terms, supervised, semi-supervised and unsupervised learning methods
are differentiated by the amount of ground truth information that is available
to the learning system: in supervised learning systems the ‘answer’ which may,
for example, be a target variable or a class label is known to the system; semi-
supervised systems may have access to such information for a limited number
of samples or may involve revalidation of the automated prediction with expert
knowledge; and unsupervised learners do not have any ground truth information
with which to guide the learning process.

Although classification and clustering are conceptually similar, in practice the
techniques are usually used in fundamentally different ways: clustering methods
are generally applied to unsupervised tasks and do not require either training
data or ground truth label information, whereas classification is usually a super-
vised task which requires both. At a basic level the goal of clustering is to group
similar things together without reference to the name of the group or what mem-
bership of a group represents, other than the fact that the members are similar
in some way, whereas the objective of classification is to learn, from examples,
relationships in the data which facilitate the mapping of training instances to
class labels, such that when presented with a new unseen instance the classifica-
tion system may assign a class label to that instance based on rules/relationships
learned in the training phase.

2 Previous Work

An exhaustive review of the application of EAs to clustering methods and deci-
sion tree induction is beyond the scope of this paper. Here we have chosen to
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focus on the most recent work and that which we determined to be most relevant
to the current study. For a comprehensive survey of EAs applied to clustering,
the interested reader is directed to [23], whereas a detailed review of EAs applied
to decision tree induction can be found in [5].

Relative to the volume of existing research on supervised learning in the field
of Evolutionary Computation (EC), unsupervised and semi-supervised learning
have received little attention. Of the existing work, a significant proportion in
the area of unsupervised learning recommends the use of clustering methods
for feature selection [28,31,33], and the majority of this work recommends a
traditional K-means approach.

[36] used clustering was used in an interesting way whereby a Differential
Evolution (DE) algorithm with built-in clustering functionality was proposed.
They studied its effectiveness on an image classification task, and compared
their results with several well known algorithms such as K-means but reported
statistically indistinct results.

A different unsupervised GP approach was proposed in [35] where a novel
fitness function was used in feature selection for the purpose of identifying redun-
dant features. The authors reported superior results when performance was com-
pared with several state of the art algorithms. GP was again employed in [21]
where it was used to develop low level thin edge detectors. In that work the
authors demonstrated that edge detectors trained on a single image (without
ground truth) could outperform a popular edge detector on the task of detect-
ing thin lines in unseen images.

Another novel application of K-means was proposed by [25] who integrated
it into GP and used this hybrid approach for problem decomposition – grouping
fitness cases into subsets. They applied their strategy to several symbolic regres-
sion problems and reported superior results to those achieved using standard
GP. They later developed a similar approach [26] for time series prediction.

On the subject of multi-class classification problems, there have been several
interesting approaches using tree based GP including strategies for decomposing
the task into multiple binary problems [48], treating MCC problems as regression
tasks [11] and experimenting with various thresholding schemes such as [51].
Other methods have been proposed which utilise GP variants including multi
level GP (MLGP) [50], Parallel linear GP [16] and probability based GP [47] to
name a few.

There have been several other evolutionary approaches to MCC including
self-organising swarm (SOSwarm) which was described in [38]. In that work,
particle swarm optimisation (PSO) was used to generate a mapping which had
some similarities to a type of artificial neural network known as a self organis-
ing map. SOSwarm was studied on several well known classification problems
and while the average performance seemed to degrade as the number of classes
increased – the best performing solutions were competitive with the state of
the art.

DTs have previously been combined with GE in [13]. The algorithm was
applied to the binary classification task of detecting gene-gene interactions in
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genetic association studies. The researchers reported good results when their
GE with DT (GEDT) system was compared with the C.45 DT algorithm. Our
suggested approach has some similarities to this work. However, that research
focused on a supervised binary task where attribute values were restricted to a
common set of 3 items.

Clustering methods have also been applied to MCC problems. A hybrid
method which combined a GA with local search and clustering was suggested
in [41], where it was applied to a multi-class problem on gene expression data.
The results of that investigation showed that their method (HGACLUS) deliv-
ered a competitive performance when compared with K-means and several ear-
lier GA approaches described in [12,30]. GP was again combined with K-means
clustering for MCC in [1] where the researchers used the K-means algorithm
to cluster the GP program semantics in order to determine the predicted class
labels.

Competitive results were also reported in [34] in which K-Means clustering
was again used with GP for MCC. There, clustering was combined with a multi-
genic GP approach in which each individual was composed of several solution
parse trees having a common root node.

Concerning DTs, [5] concluded that good performance of EAs for decision
tree induction in terms of predictive accuracy had been empirically established.
They recommended that investigation of these algorithms on synthetic data
should be pursued and also the possibility of using evolutionary computation
for the evolution of decision tree induction algorithms. In this paper we address
the first of these recommendations. The candidate solutions evolved by GE are
computer programs which emulate decision trees, and these computer programs
are produced using a grammar template capable of generating a multitude of
different solutions. Thus, it could be argued that the proposed approach does,
at least in some sense, also meet the second objective – the evolution of DT
induction algorithms.

The novel contributions of this study are the proposal of a technique for
unsupervised learning using an EA where the evolved learning hypotheses are in
human readable form, and the extension of this to the development of a hybrid
GE framework which can also be used for supervised and semi-supervised learn-
ing. The new system which we call GEML is successfully applied to the problem
of multi-class classification. We also investigate the effectiveness of extending the
GEML method through the construction of ensemble, majority vote learners.

3 Proposed Method

In ML DTs generally employ the concept of information gain to inform branch-
ing decisions during the construction of a decision tree, where the measure of
information gain used relies on knowledge of the ground truth labels. While it
is normal practice to make use of the ground truth information in the training
data for a supervised learner, this is not possible for unsupervised methods and
to a limited extent for semi-supervised methods as there is no such data avail-
able in the unsupervised case, and only limited aces to ground truth labels in
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the semi-supervised domain. Instead, we construct of an if then else structure
where the if component may be used to test various conditions pertaining to the
data, whereby the learning system has access to both the attribute values and
also to the variance of each attribute on the training data. Thus, by design our
system does not currently implement DTs according to a strict definition of the
algorithm, as using label information precludes unsupervised learning.

3.1 Grammatical Evolution

Grammatical Evolution (GE) [40] is a flexible EC paradigm which has several
advantages over other evolutionary methods including standard GP. In com-
mon with its traditional GP relative, GE involves the generation of candidate
solutions in the form of executable computer programs. The difference is that
GE does this using powerful grammars whereas GP operates with a much more
limited tool-set.

A key aspect of the GE approach is genotype phenotype separation whereby
the genotype is usually (but not necessarily) encoded as a vector of integer
codons, some or all of which are mapped to production rules defined in a user
specified grammar (usually in Backus-Naur-Form). This mapping results in
a phenotype executable program (candidate solution). GE facilitates focused
search through the encoding of domain knowledge into the grammar and the
separation of search and solution space such that the search component is inde-
pendent of the representation and may, in principle, be carried out using any
suitable algorithm – a genetic algorithm is often used but other search algorithms
such as PSO [39] and DE [37] have also been used to good effect.

The role of the user-defined grammar is key to guiding the evolutionary search
towards desirable solutions. The grammar is essentially a specification of what
can be evolved and it is up to the evolutionary system to determine which of the
many possible solutions which can be generated using the specification should
be evolved [45]. A small change in a grammar may induce drastically different
behaviour. In this work we have designed a grammar, shown in Fig. 1, which
facilitates the assignment of data instances to clusters based on the results of
applying simple ‘if then else’ decision rules. While the individual rules are quite
simple, the grammar allows for the construction of powerful expressions capable
of representing both simple and complex relationships between attributes as
demonstrated in Fig. 2.

3.2 Objective Functions

For each of the three learning problems: supervised, unsupervised and semi-
supervised, we employ a different objective function to drive evolutionary
progress. In the supervised case we use classification accuracy which is sim-
ply the proportion of instances correctly classified by the system. Since this
study uses balanced data sets, we simply use the number of correct predictions
to measure system performance. Accuracy values range between 0 and 1 where
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Fig. 1. Example grammar for five class problem with three attributes (< attr >). The
< var > entries represent the variance in the training data across each attribute. The
‘then if else’ format is designed to simplify the syntax required in a python environment
– as the system evolves python expressions. The division operation is protected in the
implementation.

Fig. 2. Example expression generated for a three class, three attribute classification
task.
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1 represents perfect classification. The system is configured with an objective
function designed to maximise fitness.

For the unsupervised task we have chosen to use a metric of clustering perfor-
mance known as a silhouette co-efficient or silhouette score (SC) as the objective
function. The SC is a metric which does not require knowledge of the ground
truth which makes it suitable for use in an unsupervised context. For each data
point two measures are calculated: a. the average distance (according to some
distance metric) between it and every other point in the same cluster and b.
the mean distance between it an all of the points in the nearest cluster that is
not it’s own cluster. The silhouette score over all points is calculated according
to the formula shown in Fig. 3. Our system tries to maximise this value during
the evolutionary process. Note that this approach, which aims at optimising the
SC rather than cluster centroids, is quite different from the other EC methods
outlined in Sect. 2 where clustering tasks have generally been tackled using the
K-means algorithm.

The silhouette score ranges between −1 and 1, where a negative value implies
that samples are not assigned to the correct clusters, a value close to 0 indicates
that there are overlapping clusters and a score close to 1 means that clusters are
cohesive and well separated.

(b−a)/max(a,b) (1)

Fig. 3. Silhouette co-efficient.

To calculate the silhouette co-efficient it is first necessary to choose an appro-
priate distance metric from the many and varied options available in the litera-
ture. In this work we have used cosine distance also known as cosine similarity as
it is suitable for determining the similarity between vectors of features and obvi-
ates the need for data normalisation. Also, we experimented with several metrics
including euclidean and mahalanobis distance before choosing cosine distance –
as its use resulted in the best results over a range of synthetic classification
problems. The results for cosine distance were better in terms of classification
accuracy when cluster assignments were converted to class labels using a stan-
dard approach.

Semi-supervised learning is suitable for classification situations where some
but not all ground truth labels are available. It may be the case, for example, that
scarce or expensive human expertise is required to determine the labels. In these
cases, it is usually possible to improve unsupervised performance by adding a
small number of labelled examples to the system. Although, our synthetic data is
fully labelled, we simulate partial labelling by only considering a random subset
of training data (20 % of the full data set) to be labelled; the rest of the data set
is treated as unlabelled. We compute prediction accuracy on the labelled data
and the silhouette score on the unlabelled set. We then add the two measures
to get a final score and strive to maximise this score during evolution.
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To summarise, candidate solutions are generated using a specification
described in a grammar such as the one shown in Fig. 1, and the same grammar
is used for all of the GEML problem configurations. Then, applying the decision
rules defined in the grammar problem instances are assigned to clusters as shown
in Fig. 4 and then depending on whether the task is supervised, unsupervised,
or semi-supervised the system tries to optimise the classification accuracy, the
silhouette score or a combination of the two. The key point here, is that the
same grammar is used for each type of learning – only the objective function is
different.

Fig. 4. Example expression tree.

Figure 4 illustrates the expression tree of an example solution for a five-class
task. Similar to a DT, the internal nodes of the tree represent branching decision
points and the terminal nodes represent cluster assignments.

4 Experiments

In this section we outline the construction of our experiments including the
parameters, datasets and benchmarks used. We also detail the results of these
experiments together with the results achieved on the same problems with our
chosen benchmark algorithms. Details of the naming convention for the various
experimental configurations are shown in Table 1.

4.1 Benchmark Algorithms

As we incorporate ideas from DT learning and clustering methods into our hybrid
GEML approach, it is appropriate that we benchmark the proposed approach
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against Decision Trees [10] as a supervised method and against the K-means clus-
tering algorithm [49] as an unsupervised paradigm. For semi-supervised learning
we compare with a label propagation (LP) [43] algorithm. The idea behind LP
is similar to k-Nearest Neighbours (k-NN) [2] and was originally proposed for
detecting community structures in networks.

We also compare with support vector machines (SVMs) [8] for supervised
learning as the method may provide a useful benchmark as it is known to achieve
good results with balanced datasets, which is the case here, and while SVMs are
inherently binary classifiers they can perform multi-class classification in various
ways, most commonly using a “one versus all” strategy.

For comparison purposes we choose simple classification accuracy as a perfor-
mance metric. It has been empirically established in the GP literature that simple
classification accuracy is not a reliable measure of classification on unbalanced
datasets [7], and that other measures such as average accuracy or Matthews
Correlation Co-efficient might be more appropriate especially if combined with
a sampling approach [18]. However, in this preliminary investigation, the classes
are balanced which allows us to consider simple classification accuracy as a rea-
sonable measure, particularly as we want to be able to observe differences in
performance across the various levels of learning.

Table 1. Experimental configurations.

Configuration Explanation

GEML-SUP Supervised GEML

GEML-SEMI Semi-supervised

GEML-UN Unsupervised GEML

DT Decision Tree Learning

LP Label Propagation

KM K-means Clustering

SVM Support Vector Machine

We adopt a popular mechanism to determine which predicted label repre-
sents which a priori class label: the predicted class is mapped to the a priori
class which has the majority of instances assigned to it, e.g. for a binary task
with 1000 training instances, if predicted class 1 has 333 members of ground
truth class 1 assigned to it and 667 instances of class 0, then predicted class
1 is determined to represent the a priori class 0. It is important to note that
this method is used to calculate the accuracy metric and used only for report-
ing and comparison purposes across all tasks and methodologies. The measure
(classification accuracy) is the main driver of the evolutionary process in the
supervised tasks, is used on only a percentage of the training instances in the
semi-supervised case. In all cases, the same mapping from cluster assignment to
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class label determined during the training phase also applies when evaluating
performance on test data.

For each of the GEML methods the evolved solutions have similar form to
the example shown in Fig. 2. This is essentially a python expression that can
be evaluated for each training and each test instance. The result of evaluating
the expression on a given instance is an integer which is converted into first a
cluster assignment and then a class label, using the method previously described.
Although the objective functions used to determine fitness and drive evolution
differ according to the type of learning model as detailed in Sect. 3.2, we calculate
the classification accuracy for each unevaluated individual at each generation on
training and test data. At no time is the test data used in the learning process.

For each problem, for each dataset and each learner, the algorithm was run
fifty times using the same synthetic datasets and train/test splits. A different
random seed was used for each run of the same algorithm and these same random
seeds were used for the corresponding run of each algorithm. The popular scikit-
learn [42] python library for machine learning was used for all of these ML
experiments.

4.2 Datasets

The various algorithms were tested on several synthetic multi-class datasets
which were produced using the scikit-learn library [42] which provides functional-
ity for the generation of datasets with the aid of various configurable parameters.
For this study we investigate balanced multi-class problems of two, three, four
and five classes each. The library facilitates user control of the number, type
and nature of features selected for experiments. For example, features can be
informative, duplicate or redundant. We have chosen to use informative features
only for the current work.

Given a problem configuration (number of classes), for each run of each algo-
rithm a dataset of 1000 instances was generated and then split into training and
test sets of 700 and 300 instances respectively. Identical random seeds were used
for the corresponding run for each configuration, such that the same dataset was
generated for each setup for a particular run number.

We have chosen to use synthetic datasets: 1000 instances were generated,
without added noise, and with few features, each of which is informative. Employ-
ing synthetic datasets allows us to configure the data to have informative features
such that it is, as far as possible, amenable to being clustered or classified. We
have made these choices in an effort to ensure that the data is not biased to
favour any particular algorithm or learning paradigm. For example, DTs are
known to over-fit and not generalise well where there are a large number of
features and few instances.

The decision to use synthetic datasets also delivers on the recommendation
of [5] to use synthetic data for decision tree induction, as described in Sect. 2.
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Table 2. Evolutionary parameters.

Parameter Value

Population size 500

Replacement strategy Generational

Number of generations 100

Crossover probability 0.9

Mutation probability 0.01

4.3 Evolutionary Parameters

Important parameters used in these experiments are outlined in Table 2. Evolu-
tionary search operators in GE are applied at the genotypic level, and in this
work each individual’s genotype is a linear genome represented by a vector of
integers. The mutation operator operates by replacing a single integer with a
new one randomly generated within a predefined range. One point crossover is
used, whereby a single crossover point is randomly and independently selected
from each of the two parents (that is, the two points are likely to correspond
to different locations) and two new offspring are created by splicing parental
segments together. In both cases, these operations take place in the effective
portion of the individual, i.e. the segment of the integer vector that was used in
the genotype to phenotype mapping process – sometimes a complete phenotype
is generated before requiring the full integer vector.

4.4 Experimental Results

Results for average and best training and test accuracy can be seen in Table 3,
where for convenience the best result in each category is in bold text. For compar-
ison purposes we are interested in comparing the supervised methods with each
other and the unsupervised approaches with the other unsupervised methods
etc. Thus we compare GEML-SUP with both DT and SVM, GEML-UNS with
KM and GEML-SEMI with LP. However, we are also interested in observing the
relative performances of the three different levels of learning.

Looking first at the supervised approaches, we can see that the SVM approach
performs well across all of the problems studied with regard to average classifi-
cation accuracy on both training and test data. Encouragingly, the GEML-SUP
configuration is very competitive with SVM on the first three problems and
outperforms DT on each of those tasks.

On the semi-supervised experiments GEML-SEMI outperforms LP on all
problems for both training and test data in terms of average classification accu-
racy.

Finally, with regard to the unsupervised set-ups GEML-UN outperforms KM
for average accuracy on training and test data on all problems.

For each algorithm, the performance of the various configurations degrades
as the number of classes increases which is not surprising as adding more classes
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increases the difficulty of the problem to be solved. Overall, the SVM algorithm
suffered least from this issue, which is again not surprising given that the imple-
mentation used here [42] solves MCC problems using a binary decomposition
strategy.

Reviewing the results in Table 3, we see that values for best overall training
and test accuracy on the binary and three class tasks for each of the GEML
methods are not competitive with the other approaches. For example, on the
three class task, the average test accuracy for K-means is 0.74 whereas the best
result is 0.99 compared with GEML-UN which has an average test accuracy of
0.75 and a best result of 0.86 and the GEML-SUP which has an average test
accuracy of 0.92 and a best result of 0.95. The results for each of the GEML
setups show that the reported standard deviation is lower than for the other
algorithms.

It is unclear to us whether this phenomenon is associated with the GE par-
adigm itself, the nature of the MCC problem or some other factors. However, it
could be argued that the behaviour is not necessarily a negative result, as having
a larger standard deviation with a higher extreme value can also mean that the
algorithm is unreliable. After all, a good test set performance is only valuable if
it is consistently achieved, not as an exceptional case.

Due to the stochastic nature of GE one might hypothesise that there is a
higher probability of many individuals achieving good results across many runs
on the easier one and two class problems than on the more difficult problems
where individuals have to learn to incorporate a larger number of class labels:
due to the added complexity there are likely to be fewer fit solutions early in
the evolutionary process and thus fewer opportunities to improve through the
application of genetic operators. One can easily imagine that there could be sig-
nificant variability across runs depending on the quality of the initial population,
and the existence of fewer highly fit solutions reduces the probability of truly
excellent ones emerging.

Looking at the generalisation performance of each method in terms of the
variance component, we adopt a simple measure whereby the variance error is
simply the difference in performance of the various learning hypothesis between
training and test data. In this respect, of the algorithms studied only the LP
approach exhibits high variance. The various GEML methods all produce good
generalisation performance. This is quite interesting as its close relation GP is
known to exhibit a low bias high variance behaviour [27]. We can hypothesise
that possible contributing factor to this contrast in behaviour is due to the gram-
mar used, even if it contains recursive rules it is likely to constrain the size of the
evolved programs. [3] demonstrated empirically that while program size tends
to increase steadily during GP runs, the average size of GE genomes remains
roughly static after an initial period of growth or shrinkage. In those experi-
ments, GP genomes were consistently larger than GE genomes after only fifty
generations. It may be the case that these effects are preventing the evolved mod-
els from becoming over complex. Recent results presented in [3] would suggest
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that GE does not over-fit on regression problems, where the required grammar
would be fundamentally different, either.

If we analyse the difference in performance between the various supervised,
semi-supervised and unsupervised algorithms, it is not surprising that in all cases
the supervised algorithms produced the best results and that the semi-supervised
algorithms performed better than the unsupervised ones. Of course, the unsu-
pervised and semi-supervised methods are not usually evaluated in the same way
as supervised classification approaches: using accuracy as a performance metric.
We have chosen to do so here as a convenient and practical way to gain some
insight into the likely relative performance of our hybrid technique when it is
applied to the three learning approaches.

The results suggest that while the performance of all of the algorithms dete-
riorates as the number of classes increases, this effect is even more evident for the
unsupervised and semi-supervised methods where the performance of GEML-UN
drops from 90 % on the binary task to 66 % for the five class problem, although
this is still better than the corresponding LP algorithm. Again, we can hypoth-
esis that while adopting a binary decomposition approach may seem attractive,
this would be very challenging in an unsupervised context. However, there may
be some scope for the strategy in the semi-supervised paradigm.

Statistical Analysis. We carried out tests for statistical significance on the
test results using the non-parametric Mann-Whitney U-Test. This revealed that
statistical significance of results sometimes varied depending on the problem.
Any differences between SUP and SVM were not significant for the two and
three class problems but for the four and five 5 ones SVM is significantly better
with 99 % confidence. Comparing SUP against DT, the differences are significant
at the 95 %, 99 % and 99 % confidence levels for the two, three and four class
problems respectively (SUP is better), but not significant for the five class task.
For the semi-supervised tasks, any differences are not significant for the binary
task but the GEML-SEMI results are significantly better at the 99 % confidence
level for the other three problems. Finally, the analysis comparing GEML-UNS
with K-Means behaves similarly, where GEML-UNS is significantly better on
the two, four and five class tasks having confidence levels of 99 %, 95 % and 95 %
respectively, and with a p-value of 0.58 there was no significant difference on the
three class task.

5 Ensemble Approaches

The results demonstrate that while the GEML approach is competitive with the
best ML algorithms on the two and three class supervised tasks, SVMs outper-
form GEML on the four and five class problems. As GE is a non-deterministic
algorithm we hypothesised that it may be possible to improve its relative perfor-
mance on the more difficult four and five class tasks, by generating GE majority
voting classifiers which have previously [9,15,20] been shown to be effective in
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Table 3. Average and best classification accuracy on training and test data.
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C2 GEML-SUP 0.96 0.01 0.98 0.96 0.01 0.97

DT 0.93 0.04 0.99 0.93 0.04 0.99

SVM 0.95 0.03 0.99 0.95 0.03 0.99

GEML-SEMI 0.90 0.01 0.93 0.91 0.01 0.92

LP 0.90 0.06 0.99 0.88 0.07 0.99

GEML-UN 0.90 0.01 0.92 0.91 0.01 0.93

KM 0.84 0.08 0.99 0.84 0.08 0.99

C3 GEML-SUP 0.93 0.01 0.94 0.92 0.02 0.95

DT 0.87 0.04 0.97 0.88 0.05 0.99

SVM 0.92 0.03 0.98 0.92 0.04 0.99

GEML-SEMI 0.88 0.04 0.94 0.87 0.04 0.92

LP 0.83 0.05 0.96 0.79 0.08 0.93

GEML-UN 0.76 0.04 0.87 0.75 0.04 0.86

KM 0.75 0.07 0.91 0.74 0.08 0.99

C4 GEML-SUP 0.86 0.01 0.88 0.86 0.02 0.89

DT 0.82 0.04 0.94 0.83 0.04 0.93

SVM 0.88 0.03 0.94 0.88 0.03 0.96

GEML-SEMI 0.78 0.05 0.84 0.78 0.05 0.85

LP 0.77 0.05 0.88 0.71 0.07 0.85

GEML-UN 0.71 0.04 0.79 0.71 0.04 0.81

KM 0.65 0.06 0.83 0.67 0.07 0.84

C5 GEML-SUP 0.77 0.06 0.85 0.75 0.04 0.83

DT 0.77 0.04 0.88 0.79 0.05 0.89

SVM 0.85 0.03 0.93 0.86 0.03 0.94

GEML-SEMI 0.72 0.04 0.76 0.75 0.06 0.82

LP 0.71 0.05 0.84 0.65 0.07 0.83

GEML-UN 0.66 0.06 0.77 0.69 0.07 0.82

KM 0.63 0.05 0.78 0.63 0.06 0.79
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improving classifier generalization. In general, these approaches operate by com-
bining a large number of classifiers and then classifying each instance with the
class label of the class which receives the greatest number of votes.

A weak learner is one whose accuracy in labelling examples may be only
slightly better than random guessing whereas a strong learner is one whose pre-
dictions are strongly correlated with the true labels. It has been well established
in the literature [24,46] that rather surprisingly, weak learners can be combined
to produce much stronger models. Indeed the strategy is so successful that it
has been widely adopted in evolutionary computation and other ML algorithms.
See [44] for a comprehensive review.

We have chosen to investigate two different strategies for combining our
GEML models. In the first instance we combine the predictions of the best
of run models of each run giving a total of fifty models to form an ensemble and
we call this configuration ensBest. Secondly, we explored an approach whereby
we combined every model from each generation whose accuracy exceeded a pre-
defined threshold and we refer to this approach as ensPop. Using this second
approach, which may generate thousands of models to add to the ensemble we
are interested to discover if the combined approach may achieve better accuracy
that our single best model.

For these initial experiments within the GE runs, we initially chose to apply
a weak threshold of 0.60 accuracy whereby any individual whose fitness was
greater would have its predictions added to the ensemble. However, the accuracy
scores produced by these generated ensembles were not at all encouraging – often
several percent worse than the best individual score. In the final experiments we
set the threshold to be a value which was 10 % lower than the average training
accuracy of the population as per Table 3.

As the evolutionary system converges the population becomes dominated
over time by very similar or identical individuals. We chose not to allow dupli-
cates to join the ensemble. Once an ensemble is constructed, we examine the
prediction correlation between the candidate predictions using the Pearson cor-
relation coefficient and then eliminate potential solutions which were greater
than 90 % correlated with more than two thirds of their ensemble mates. These
choices were designed to promote diversity in the ensemble which has been deter-
mined to be a necessary condition for constructing an effective ensemble [14].
However, the values chosen are somewhat ad-hoc, and it is likely that they could
be improved upon. The construction and modification of the ensemble member-
ship is carried out on the training data and then the test predictions of the final
ensemble members are compared with the ground truth.

The results obtained shown in Table 4 indicate that the ensembles con-
structed from the fifty best-of-run individuals, for the four class problem,
achieved the same average test accuracy but did not improve on the result for
the single best individual previously reported. For the five class task the ensBest
ensemble was significantly better that the average test result and produced a
slight improvement on the overall best individual score.
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Table 4. Ensemble results.

Task Average test Best test ensBest Average ensPop

4Class 0.86 0.89 0.86 0.87

5Class 0.75 0.83 0.84 0.80

Similarly, the larger ensembles, which may be constructed from predictions
of thousands of members, even after the duplicates and highly correlated ones
have been removed, produce test results which are better than the end-of-run
population average. There may be potential to further improve the performance
of the ensPop ensemble construction by, for example, determining which can-
didates are well correlated with the true training labels and assigning a higher
weight to the predictions of those individuals on the test data. It is interesting
to note that both ensemble approaches did comparatively better on the more
difficult five class task than on the four class problem.

5.1 Discussion

This is a simple study into the potential of the GEML system to tackle multi-class
classification tasks which may be supervised, unsupervised or semi-supervised in
nature. Although the results are quite encouraging we feel that there is potential
for improvement in the existing system. The obvious place to look for improve-
ment is the all-important grammar. Our next steps will be to examine this to
see how we can make it more effective. As a first move in that direction we will
analyse the best individuals from our existing runs to determine which rules
are contributing most and which are not performing. We will then modify the
system applying this new information and use it to tackle a large, potentially
noisy real-world medical dataset.

In the results section of this paper we have compared with several multi-
class classification algorithms, and the reported results demonstrate that the
most successful supervised technique is SVM. However, it is perhaps fair to
point out that SVMs are not inherently multi-class, rather the algorithm usually
(but not always) implements multi-class problems in either a “one versus one”
or a “one versus all” approach, which in fact was how SVMs were implemented
in this study. Thus, the performance of GEML and SVMs are, in one sense,
not directly comparable. Given that the average performance of GEML on the
two and three class problems is very competitive with that of the SVM, it is
reasonable to hypothesise that equivalent performance to SVMs which use binary
decomposition, might be expected on problems with greater numbers of classes
if the GEML method were adapted to also perform multi-classification by way
of binary decomposition. It may also be worth re-iterating that unlike SVMs
the GEML setups all provide human readable solutions, which is an important
consideration in many problem domains.

We have seen in this investigation that the GEML system which incorporates
ideas from decision tree and cluster based learning has produced some statisti-
cally significant results. As GE is such a flexible paradigm there is no reason why
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alternative ML algorithms could not be incorporated instead. Once the candi-
date ML algorithm has some aspect which requires optimisation it should be
suitable for an evolutionary approach.

6 Conclusions

In this paper we described a novel hybrid approach for solving multi-class prob-
lems in supervised, semi-supervised and unsupervised domains. The system
which we call GEML, combines elements of decision tree logic and clustering
techniques and incorporates these into a flexible grammatical evolution frame-
work.

We have described the GEML framework in detail together with a set of
experiments comparing GEML with several other state of the art ML algorithms.
Results of these experiments were presented and discussed and we noted that
the proposed system delivered competitive and generalizable accuracy which was
shown to be statistically significant on all of the problems studied.

Our initial ensemble approaches have delivered encouraging results and in
future work we may investigate other strategies which may be used to optimise
the various parameters including the threshold values used both to determine
which models to include in the original ensemble and which correlated models
to exclude. Finally, it may be interesting to determine if improved classification
accuracy may be achieved through creating a master ensemble from the separate
ensembles generated from each GP run.
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Abstract. For some time, there has been a realisation among Genetic
Programming researchers that relying on a single scalar fitness value to
drive evolutionary search is no longer a satisfactory approach. Instead,
efforts are being made to gain richer insights into the complexity of pro-
gram behaviour. To this end, particular attention has been focused on
the notion of semantic space. In this paper we propose and unified hier-
archical approach which decomposes program behaviour into semantic,
result and adjudicated spaces, where adjudicated space sits at the top
of the behavioural hierarchy and represents an abstraction of program
behaviour that focuses on the success or failure of candidate solutions
in solving problem sub-components. We show that better, smaller solu-
tions are discovered when crossover is directed in adjudicated space. We
investigate the effectiveness of several possible adjudicated strategies on a
variety of classification and symbolic regression problems, and show that
both of our novel pillage and barter tactics significantly outperform both
a standard genetic programming and an enhanced genetic programming
configuration on the fourteen problems studied. The proposed method
is extremely effective when incorporated into a standard Genetic Pro-
gramming structure but should also complement several other semantic
approaches proposed in the literature.

Keywords: Program semantics · Selective breeding · Genetic program-
ming

1 Background

Previously, research effort concerned with directed crossover has focused pri-
marily on structural considerations when determining suitable crossover points
in genetic programming trees (GP) [9]. See, for example [14,15].

One example of this effort can be seen with Context Aware Crossover (CAC)
which was proposed in [18]. In this method, after two parents have been selected
for crossover, one sub-tree is randomly chosen in the first parent and this sub-
tree is then crossed over into all possible locations in the second parent and all
generated children are evaluated. The best child (based on fitness) is selected and
copied to the next generation. An advantage of such context-based crossovers is
c© Springer International Publishing AG 2017
J.J. Merelo et al. (eds.), Computational Intelligence, Studies in Computational Intelligence 669,
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increased probability of producing children which are better than their parents.
On the other hand, it can be time consuming to evaluate the context of each
sub-tree.

The notion of a potentially unifying, representation independent geometric
crossover operator was initially explored in [20–22] in which the authors proposed
viewing solution space as a geometric discrete space rather than a graph structure
as was previously the norm. This new view of solution space supports the concept
of distance by which we can imagine measuring somehow the distance between
candidate solutions in the solution space or the distance between a solution and
the global maximum/minimum.

These ideas provided a platform for looking at genetic operators such as
crossover in a profoundly different way, where the emphasis is shifted away from
the structure of solutions and focuses instead on their meaning as expressed by
their semantics. Taking this approach facilitates the measurement and utilisation
of distances in semantic space both between candidate solutions and between
those solutions and the desired target.

There is currently no definitive agreement on the exact meaning of the term
semantics in GP. However, a fairly widely adopted one [5,11,19], which we also
adopt here, is that the semantics of a GP program is the vector of outputs that
GP program produces on training data: i.e. each value in the output vector
represents the result of evaluating the GP program on a single training instance.

Semantically Driven Crossover (SDC) was suggested in [3] in which they
applied a technique which removed redundant and unreachable arguments from
boolean GP programs and produced Reduced Order Binary Decision Dia-
grams (ROBBDs) which could then be used to compare program semantics.
In that work, crossovers were discarded unless the offspring were semantically
different from the parents. They reported superior performance and less code
bloat using SDC and observed that bloat may be partially a result of intron
creation during crossover.

This ideas of SDC was extended for real valued symbolic regression (SR)
problems in [24,29] which proposed Semantic Aware Crossover (SAC), and inves-
tigated several possible scenarios in which they compared the semantics of off-
spring with their parents, and depending on the outcome accepted either or
both offspring and/or parents into the new population. They also examined the
effectiveness of a method which compared the semantics of sub-trees at proposed
crossover points, only accepting offspring into the new population if the sub-trees
were not semantically equivalent. They investigated SAC on several real-world
SR problems and concluded that the sub-tree approach was the most effective
of those trials, and that SAC was a useful technique for maintaining diversity a
GP population.

[11] developed an approach to semantic crossover that utilised a type of
brood recombination. In this method, called approximately geometric seman-
tic crossover (SX), a pool of offspring is produced using sub-tree crossover for
each mating pair, and the offspring whose semantics are closest to its parents is
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selected unless there is a child with higher fitness than both parents, in which
case it is selected regardless of semantics.

The alluring appeal of geometric semantic crossover is that effective operators
of this type can provide a guarantee that the fitness of the offspring produced
will be no worse than the fitness of its parent with the worst fitness, provid-
ing the semantics of the offspring lie between the semantics of its parents in
solution space. The challenge is to design operators that have this property but
which are also usable in practice. Against this background, Krawiec [10] inves-
tigated two approaches for generating offspring GP individuals whose semantics
are medial (intermediate) with respect to the semantics of their parents. Both
methods concentrated on approximating mediality by determining semantic sim-
ilarity of sub-programs and basing crossovers on that - an approach that was
much more computationally realistic than trying to deal with whole programs.

A novel approach influenced by Quantitative Genetics which the researchers
called phenotypic crossover was suggested in [2]. This method aimed at max-
imising heritability by forcing offspring to have similar traits to their ancestors.
The method delivered improved results over standard GP on several problems.

[23,28] adopted a strategy which abstracted one or two levels beyond seman-
tic space into what they referred to as behaviour space. They explored the idea of
behaviour based search using several binary classification problems, where rather
than using an explicit fitness function they used open ended evolution guided by
a type of novelty search (NS) [16,17]. In this approach, selection was based on the
relative novelty of individual behaviour, where behaviour was represented by a
binary descriptor. They experimented with two different binary descriptors, each
of which was a vector of zeros and ones: one which captured whether the indi-
vidual correctly predicted each class label or not (accuracy descriptor), and the
other which captured the predicted class labels (class descriptor). They reported
that NS outperformed standard GP on difficult problems but did slightly worse
on trivial ones. Interestingly, they also observed that their application of NS
seemed to eliminate or at least control bloat.

ESAGP (Error Space Alignment GP) was presented by [26] who explored
mechanisms for finding compatible individuals based on their alignment in error
space. In other work, [13] have recently proposed behavioural programming
GP (BPGP), an approach which involves decomposing and archiving for later
use, sub-programs which have good utility, where utility captures both the error
of the sub-program and its perceived usefulness according to a decision tree
methodology. They reported excellent results on a wide variety of problems.

A closely related but quite different idea was explored by [12] who applied
a clustering technique to test based problems. Their Discovery of Objectives
by Clustering (DOC) system clustered GP programs together if they had sim-
ilar behaviour on the same test cases. They constructed interaction matrices,
obtaining derived objectives to approximately represent this common behaviour
and produce more effective search drivers. The method was compared with sev-
eral other optimised GP algorithms and was shown to deliver statistically better
results on a range of problems.
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The notion of behaviour space has its origins in the area of robotics
research [4] for which the terminology would seem to be eminently suitable. We
propose to further refine and unify the terminology for GP such that behaviour
space as defined in [23,28] is decomposed into semantic space, result space and
adjudicated space. In this view, taking classification as an example, result space
maps to the class descriptor described in [23] and adjudicated space to the accu-
racy descriptor. With regard to symbolic regression, result space is equivalent to
error space as described in [26].

An exhaustive description of the relevant literature is beyond the scope of
this paper. For in depth reviews of semantic approaches the reader is directed
to [25,31].

In this work we extend and describe in greater detail the concept of adjudicted
GP as previously proposed in [8].

2 Adjudicated GP (AGP)

Our method is analagous to the process of selective breeding (sometimes called
artificial or unnatural selection), whereby humans breed animals or plants for
certain traits – typically in order to domesticate them. Typically this approach
involves several steps:

1. Decide which characteristics are important
2. Choose parents that show these characteristics
3. Select the best offspring from parents to breed the next generation
4. Repeat the process continuously

We have studied the effectiveness of our proposed approach on both classi-
fication and SR problems. The strategy is essentially the same for both tasks,
but is, of necessity, slightly more complex in the case of symbolic regression. For
the moment, we will explain the basic method as it applies to classification and
defer description of symbolic details for later.

If we take a hypothetical example of a binary classification problem using GP,
where each candidate solution is evaluated on the same ten problem instances.
Supposing we have an individual which produces the semantics shown in Fig. 1
and we apply a threshold whereby if the semantic is <= 50 the instance is
classified as belonging to class 1 and otherwise to class 2.

10 23 126 4 78 33 279 8 67 22

Fig. 1. Semantic descriptor.

This thresholding gives rise to the result descriptor shown in Fig. 2, where 0
represents instances of class 1 and 1 represents instances of class 2.
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0 0 1 0 1 0 1 0 1 0

Fig. 2. Result descriptor.

Now, if we consider the ground truth for the 10 instances as shown in Fig. 3, we
can adjudicate, i.e. make a judgement on the success or failure of our hypothet-
ical individual on each problem instance, resulting in the adjudicated descriptor
shown in Fig. 4. The adjudicated representation provides a fine grained view
of individual performance compared to a scalar fitness value such as classifica-
tion accuracy. We can easily imagine that even for a ten instance problem there
may be many individuals with exactly the same fitness score, each of whom are
correctly classifying a different set of instances.

1 1 1 1 1 0 0 0 0 1

Fig. 3. Ground truth.

As Krawiec et al. [13] pointed out, the reliance on a scalar fitness value to drive
evolution “may be crippling because one cannot expect difficult learning and
optimization problems to be efficiently solved by heuristic algorithms that are
driven by a scalar objective function which provides low-information feedback”.

0 0 1 0 1 1 0 1 0 0

Fig. 4. Adjudicated descriptor.

Figure 5 illustrates our proposed unified view of behaviour space in GP,
encapsulating some of the important semantic concepts of behaviour space [13,
28], accuracy descriptor [28], class descriptor [23] and error space [26], previously
described in Sect. 1.

As the behavioural hierarchy is ascended from the bottom up, the depth of
knowledge about a candidate solution increases.

Semantic space is at the bottom of the hierarchy, representing the simple
semantics of a genetic program as previously outlined in [11]. While the infor-
mation available here may be helpful in understanding program behaviour, it
does not tell us anything very useful about the candidate solution until a quan-
titative problem dependent step has been completed, such as thresholding in
the case of classification or determining an error vector for symbolic regression
tasks.

Once that algorithmic step has been completed, the resulting vector in result
space provides more useful information into program behaviour than is available
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Fig. 5. Unified hierarchical view.

in semantic space. However, result space does not yet provide insight into the
quality of the solution: if the program has an absolute error of 0.3 for a given
training example, is that good or bad?, if the program predicts class 1 for training
example 4 what does that mean for the quality of the solution?

At the highest level of the behavioural hierarchy is adjudicated space which
realizes a fine-grained, insightful view of program behaviour.

Thus, we choose to pursue the goal of effectively navigating the solution space
by focusing on program behaviour in adjudicated space. We are not concerned
with program syntax or representation - simply on identifying which GP pro-
grams can solve which problem instances and using this information to determine
a mating strategy inspired by selective breeding.

Thus, for each individual we decompose its adjudicated descriptor into a
for sale list which is a list identifying the problem instances that it is able to
correctly predict and a wanted list which details those instances which it has
failed to correctly predict. See Figs. 6 and 7.

In traditional GP approaches, individuals are selected for mating based on
fitness, where very unfit individuals usually have very limited opportunities to
participate in crossover. In contrast, much of the research effort outlined in
Sect. 1 explores various strategies for finding pairs or groups of individuals which
are well-matched. according to some measure of semantic compatibility before
combining them to produce new candidate solutions. Similar to other recent
work on semantic aware crossover, we choose to explore the idea that it is more
important that individuals are compatible in other, potentially more important
ways than fitness.
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The system that we propose simplifies the search for compatible mates by
focusing on individual behaviour in adjudicated space. Once an adjudication has
been made based on an individual’s results, and the for sale and wanted lists
have been populated, we can select a mate for that individual by choosing a
prospective partner whose for sale list advertises the ability to solve instances
that are on its wanted list.

As long as all individuals are adjudicated in the same way, if the for sale list
of an individual contains a reference to an instance which is on the wanted list
of another, then that pair of individuals are defined to be compatible to some
degree and suitable candidates for selective breeding.

Table 1. Symbolic Regression Benchmarks. Where X is one of 20 values uniformly
distributed between −1 and + 1.

Name Description

Nyg2 [30] X4 + X3 + X2 + X

Nyg3 [30] X5 + X4 + X3 + X2 + X

Nyg4 [30] X6 + X5 + X4 + X3 + X2 + X

As we have already described, the adjudication process for classification tasks
is quite straightforward regardless of the number of classes: each semantic is
converted into a result (predicted class label) and this is judged to be correct
or incorrect – for sale or wanted. The process is slightly more complicated for
symbolic regression problems as the notion of correctness is not as clear cut.
There are various ways that this issue could be approached including, for exam-
ple, using the idea of “hits” where some defined minimum level of error on a
training instance constitutes a hit. Preliminary experiments confirmed the intu-
ition that setting the threshold value too low was unhelpful, particularly early
in the evolutionary process. Thus we choose to use the population median mean
absolute error (MAE) as the threshold for determining whether an instance is
put on the for sale or wanted list. That is, for a given individual, if its error
for a given training instance is less than the population median error for that
instance it is adjudicated as being a success and the fitness case is put on the
individual’s for sale list, whereas if the error is greater than or equal to the pop-
ulation median error, the individual is adjudicated to have failed on that fitness
case and the instance is put on the wanted list. This is an aspect that requires
further experimentation and analysis.

2 4 5 7

Fig. 6. For sale list.
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0 1 3 6 8 9

Fig. 7. Wanted list.

Once the for sale and wanted lists have been created for each individual in the
population, there are probably many different strategies which could be adopted
in order to maximise compatibility. For this preliminary study we have chosen
to explore two different strategies which we call pillage and barter. Each of
these strategies aims to find a mating pair which are approximately optimally
compatible according to slightly differing objectives.

2.1 Pillage

The pillage method is a selfish strategy whereby for each individual the system
seeks out and chooses that mate which offers the best return in terms of satisfying
the wanted list of the first individual. For both SR and classification tasks, the
wanted list is compared with the for sale list of every other individual and the
individual which has greatest number of elements in the intersection of the two
lists is selected.

2.2 Barter

As the name suggests, the barter approach is a more congenial strategy whereby
each participating individual has the opportunity to gain from the transaction.
When the barter tactic is employed, directed crossover only happens if each
prospective parent lists instance/s on their for sale list which the other has on
their wanted list.

At each generation the compatibility of each individual with every other
individual is determined by calculating a barter rate which is analogous to the
balanced accuracy measure used in classification. Similar to the pillage approach,
the mate with highest compatibility is selected.

2.3 MuLambda GP (mlGP)

For the mlGP configuration crossover and mutation operate as for stdGP, how-
ever the selection process is slightly different: similar to the selection method
explained in [6] where μ individuals from the initial population are used to gen-
erate λ offspring, and the best μ individuals from the entire μ + λ pool are
selected to form the new population. In this instance λ = 2 ∗ μ; each crossover
operation produces two offspring.

2.4 AGP Selection

In traditional GP a mating pool is often created by pre-selecting individuals
according to some selection algorithm. Tournament selection is a popular app-
roach, whereby the larger the tournament the more elitist the selection process.
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We do not consider this method appropriate for Adjudicated GP (AGP) as the
overall fitness score of any individual is largely irrelevant for the purpose of
directing crossover. For example, we can easily imagine that an otherwise unfit
individual may have the capability to correctly solve some small set of fitness
cases. Thus, each individual in the population has the opportunity to partici-
pate in crossover events and we perform post selection at each generation, once
mating is completed.

This is achieved by adopting a μ + λ approach similar to the mlGP method
outlined above: a population of μ candidate solutions is used to produce a pool of
λ new individuals consisting of parents and offspring, from which μ individuals
are chosen by tournament selection to form the next generation. In the current
implementation λ = 2 ∗ μ; each individual program participates in crossover
with its compatible mate and each crossover, which occurs at a predetermined
probability, produces two offspring.

Table 2. GP parameters. For classification problems a tournament size of 3 applies
to standard and Mu Lambda (ML) experiments whereas tournaments of 7 candidates
were used for the AGP setups.

Parameter Value Value

Problem type Classification SR

Population size 200 200

Max. generations 30 250

Max init depth 6 6

Max depth 16 16

Tournament size 3/9 7

Crossover prob. 0.9 0.9

Mutation prob. 0.1 0.1

Evolutionary model Generational Generational

3 Experimental Analysis

We choose to compare our proposed AGP variants (pillage and barter) with a
standard GP (stdGP) set-up. In addition, and in order to isolate any potential
effects we also compare with a basic μ + λ approach (mlGP) to determine if the
selection strategy confers any benefits in and of itself.

3.1 Problems

We have selected several well known classification and symbolic regression bench-
mark problems on which to evaluate our proposed method. Classification prob-
lems consist of eight binary and three multi-class problems with varying numbers
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Table 3. Classification benchmarks [1].

Dataset Acronym Instances Attributes Classes

Blood transfusion BT 684 3 2

Liver disorders BUPA 256 6 2

Caravan insurance CAR 5946 85 2

German credit GC 750 25 2

Haberman’s survival HS 255 4 2

Ionosphere ION 348 35 2

Parkinsons disease PK 195 22 2

Wisconsin breast cancer WBC 452 9 2

Iris IR 150 4 3

Vertebral column VC 310 6 3

Wine WN 178 9 3

of instances and attributes as outlined in Table 3, whereas the three symbolic
regression tasks chosen are described in Table 1.

3.2 Parameters

Details of the function sets used are shown in Table 4. Note that constants are
not used for any of the problems studied. Details of other relevant parameter
settings are detailed in Table 2.

Table 4. Function sets used. Division, log, exp are protected.

Type Function set

Classification +,−, ∗, /
Symbolic regression +,−, ∗, /, sin, cos, log, exp, neg

For the regression tasks the objective function aims to minimise MAE,
whereas for all of the classification problems balanced accuracy is the objective
function which the system strives to maximise. Balanced accuracy also known
as Average accuracy which is a well know performance measure used in clas-
sification. This method modifies the calculation for overall accuracy to better
emphasise the performance of each individual on each class as shown in Fig 8.
The true positive (TP) rate is the proportion of positive instances which the indi-
vidual classifies as positive, whereas the true negative (TN) rate is the proportion
of negative instances which are classified as negative. The false positive (FP) and
false negative (FN) rates are the proportions of negatives which are wrongly clas-
sified as positive and the proportion of positive instances which are incorrectly
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BalAcc = 0.5∗
(

TP
(TP+FN)

+
TN

(TN+FP)

)

Fig. 8. Balanced accuracy.

classified as negative. Generally, positive and negative instances correspond to
instances of the minority and majority classes respectively.

3.3 Results

For classification benchmarks we report the average training and test balanced
accuracy and the program size. Looking at the plots in Figs. 9, 10, 11 and 12
we can see that a consistent pattern emerges: the Barter approach produces
the best performance on all of the benchmarks studied and stdGP delivers the
weakest results overall. While the success of the barter approach compared to
pillage is philosophically satisfying it is nevertheless somewhat surprising given

Fig. 9. Balanced training accuracy for (from top to bottom and left to right) BT,
BUPA, CAR, GC, HS and ION data.
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Fig. 10. Balanced test accuracy for (from left to right) BT, BUPA, CAR, GC. HS and
ION data.

that there is almost inevitably a compromise associated with using the barter
method. Interestingly, the mlGP set-up produces results which are much better
than stdGP.

Turning our attention to the symbolic regression tasks we report both the
number of successful runs together with the median MAE of the best of run
individuals in Table 5. We use the same criteria for a successful run as in [30]
which defines a successful run as one where any individual scores hits on all
fitness cases – where a hit occurs when the absolute error is less than 0.01 for a
single fitness case.

Looking at the results in Table 5 we can see that, similar to the classification
performances, of the two AGP configurations, the Barter configuration delivers
superior results in terms of the number of successful runs on all three prob-
lems, also outperforming both stdGP and mlGP, having almost twice as many
successful runs as stdGP on all problems. When it comes to average MAE the
situation is reversed, with both stdGP and mlGP producing the lowest median
error, although the difference is not significant.
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Fig. 11. Training accuracy for (from left to right) IRIS, PARK, WBC and WINE data.

Program Size. For all of the classification problems studied program growth
during evolution was much more modest when either of the AGP variants were
employed as can be seen in Fig. 13. Of course, there is some computational cost
to the proposed AGP method as compatibility has to be determined for each
prospective mate. However, this is strongly mitigated by the fact that solutions
evolved using AGP are significantly smaller than those produced by stdGP or
mlGP.

Smaller solutions are also produced by the AGP methods for the SR prob-
lems. This may partly be explained by the fact that evolution terminates if a
perfect solution is found, and there are more of these discovered during AGP
runs. Thus, one possible reason for smaller solutions is that the average size may
be smaller when there are more early terminations.

Aside from the empirical evidence we do not currently have any solid expla-
nation as to why solutions evolved using AGP are so much smaller than those
produced using the canonical GP on the classification problems. However, we can
hypothesise that the targeted nature of the method may reduce the possibility
of intron development. In this regard, we note the similarity with the behaviour
reported in [27] and also in [3].
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Fig. 12. Test accuracy for (from left to right) IRIS, PARK, WBC and WINE data.

AGP Growth Pattern. Looking at the plots for program size in Fig. 13 we
can observe an interesting phenomenon: whereas the plots for stdGP exhibit a
very similar gradient for each of the problems, those of the aGP approaches vary
according to the problem. For example, if we compare program growth of barter
on the CAR and IRIS problems we can see that on the CAR problem the rate of
growth is almost as high as stdGP, whereas for the IRIS task, barter barely grows
at all. As the CAR problem is a difficult one for GP (due to the larger number
of attributes) and IRIS is known to be an easy problem, it seems possible that
for aGP the rate of program growth may be somewhat correlated with problem
difficulty. If this were the case, it would be a very useful algorithmic attribute.

Accordingly, we carried out an investigation on the IRIS dataset whereby we
attempted to increase the problem difficulty by adding noise to a percentage of
the attribute values. This dataset has 4 attributes, and we first added noise to
the first attribute for a random 20 % of training instances, then increased the
difficulty by also adding noise to 20 % of the attributes of the second instance,
and so on.
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Table 5. Correct solutions, median error and nodes used for, best-of-run individuals
over 100 evolutionary runs.

Method Correct Median MAE Nodes

Nyg2 Barter 33 0.02 70.9

Pillage 20 0.02 63.3

mlGP 18 0.02 72.4

stdGP 16 0.02 95.6

Nyg3 Barter 20 0.03 84.0

Pillage 9 0.03 81.1

mlGP 8 0.02 97,2

stdGP 6 0.02 88.1

Nyg4 Barter 13 0.03 67.5

Pillage 13 0.03 64.1

mlGP 1 0.02 103.2

stdGP 4 0.02 108.7

The results of this experiment which can be seen in Fig. 14 are a little sur-
prising. We can see that the two configurations with the least and most amount
of added noise achieve the best average accuracy on the training data and the
one with the greatest added noise also does best on test data. Although it should
be pointed out that the difference in the plots is over a very small scale. The
result on the test data is not unexpected as an established technique to prevent
over-fitting is to ad noise to the training data. However the the difference in
training performances somewhat surprising.

When it comes to program growth, the plots suggest that added noise does
contribute to an increase in program size, although the configuration with the
most noise added does not on average produce the largest programs.

As we have carried out this preliminary experiment on a single dataset and, as
previously mentioned, the IRIS classification task is known to be a relatively easy
one – we should not draw any firm conclusions about a potential relationship
between problem difficulty and the rate of program growth in aGP without
extensive further investigation. The result is interesting nonetheless.

3.4 Statistical Analysis

To determine statistical significance, we carried out the non-parametric Fried-
man test which is regarded as a suitable test for the empirical comparison of
the performance of different algorithms [7] as shown in Fig. 15. Using this app-
roach, which does not simply count wins, but rather takes into account the
relative performance of each algorithm compared with every other algorithm on
all of the problems tackled, makes it easier to gain a clear insight into which are
most effective. Results demonstrated that the AGP barter approach performed
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Fig. 13. Average program size for (from left to right, top to bottom) BT, BUPA, CAR,
GC, ION, IRIS and PARK data.

significantly better than the other methods investigated on the selected bench-
marks as post-hoc tests produced very small p-values (0.002 and 0.00006) for
the differences between it and mlGP and stdGP respectively. A p-value of 0.003
was reported for the difference between pillage and stdGP.
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Fig. 14. Comparison of average training and test accuracy and average program size
of barter strategy on IRIS data with added noise.

Fig. 15. Friedman plot of test accuracy on classification. Methods ranked from 1 to 4
where 1 is better.

3.5 Conclusions

In this paper, we have described a novel approach for selecting compatible can-
didates recombination using crossover in GP. Our approach which we call aGP
operates in adjudicated space which is a high level of abstraction of program
semantics. The results of the experiments that we have described illustrate that
aGP is a promising methodology for evolutionary computation. Both aGP strate-
gies performed consistently well across the range of benchmarks studied, with
the barter method performing best overall.

The selective breeding process of aGP has several important advantages:
it is relatively simple to implement; produces small programs showing no evi-
dence of bloat and, most importantly, is independent of the chosen representation
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and could theoretically be applied to any evolutionary algorithm which uses a
crossover operator and is applied to classification or regression problems.

The method works well when added to a standard GP structure but we see
no reason why it could not also enhance several other semantic approaches in the
literature, as its focused approach to recombination may ameliorate some of the
known issues relating to size. Thus, as a next step we will investigate possible
effects of incorporating aGP into some other semantic paradigm.
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Abstract. In this paper, we investigate the use of an stochastic optimi-
sation bio-inspired algorithm, differential evolution, and proposed two fit-
ness (cost) functions that can automatically create an intelligent schedul-
ing for a demand-side management system so that it can use plug-in
electric vehicles’s (PEVs) batteries to partially and temporarily fulfil
electricity requirements from a set of household units. To do so, we pro-
posed two fitness functions that aim: (a) to use the most amount of
energy from the batteries of PEVs while still guaranteeing that they can
complete a journey, and (b) to enrich the previous function to reduce
peak loads.

Keywords: Differential evolution · Demand-side management systems ·
Plug-in electric vehicles

1 Introduction

Evolutionary Algorithms (EAs) [1,2], also known as Evolutionary Computation
systems, are influenced by the theory of evolution by natural selection. These
algorithms have been with us for some decades and are very popular due to
robust theoretical works [3–6] developed around them that have helped us to
understand why they work (e.g., representations’ properties) and due to their
successful application in a variety of different and challenging problems, ranging
from the automated design of an antenna carried out by NASA [7], the auto-
mated optimisation of game controllers [8], the automated evolution of Java
code [9], up to the automated design of combinational logic circuits [10,11]. EAs
can be considered a “black-box”, as they do not require any specific knowledge
c© Springer International Publishing AG 2017
J.J. Merelo et al. (eds.), Computational Intelligence, Studies in Computational Intelligence 669,
DOI 10.1007/978-3-319-48506-5 9
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of the fitness function. They work even when, for example, it is not possible to
define a gradient on the fitness function or to decompose the fitness function
into a sum of per-variable objective functions.

In this work, we are interested in investigating the applicability of EAs in
a dynamic and challenging problem in Demand-Side Management (DSM) Sys-
tems taken from Smart Grids where, in summary, the goal is to automatically
create fine-grained solutions that indicate the amount of energy that can be
taken from electric vehicles’ (PEVs) batteries to partially satisfy energy demand
in residential areas and reducing electricity peaks, whenever possible. The pro-
posed approach and fitness functions used in our work (described in Sect. 2) is
not amenable to analytic solution or simple gradient-based optimisation, hence
search algorithms such as EAs are required.

DSM is normally considered as a mechanism or program, implemented by
utility companies to control the energy consumption at the customer side [12].
DSM is an important research area in the Smart Grid (SG) community as shown
by the increasing number of publications over the years (e.g., more than 2,000
papers have been published in this area where more than two thirds have been
published since 2010 [13]).

DSM programs include different approaches (e.g., manual conservation and
energy efficiency programs [14], Residential Load Management (RLM) [15,16]),
where RLM programs based on smart pricing are amongst the most popular
methods. The idea behind smart pricing is to encourage users to manage their
loads, so that they can reduce electricity prices while, at the same time, the
utility companies achieve a reduction in the peak-to-average ratio (PAR)1 in
load demand by shifting consumption whenever possible [13,15,17].

One of the major limitations of smart pricing is the fact that the electricity
price is proportional to the electricity demand (i.e., a high number of appli-
ances/devices connected to the grid results in having high electricity costs). To
alleviate this problem, we propose the development of a demand-side autonomous
intelligent management system that exploit plug-in electric vehicles’ (PEVs)
batteries. More precisely, our system uses the PEV’s batteries to partially and
temporarily fulfil the demand of end-use consumers instead of using only the
electricity available from a substation transformer. This is possible thanks to
the vehicle to grid technology (V2G), which is described as a system in which
electric-drive vehicles can feed power to the grid with the appropriate com-
munication/connection technologies acting as mobile generators of limited out-
put [18,19].

The deployment of such a system implies several significant challenges, e.g.
different driving patterns resulting in the amount of energy needed at the time
of departure, amount of energy taken from the PEVs’ batteries. To tackle this
problem, we use an optimisation EA.

1 Peak-to-average ratio is calculated by the maximum load demand for a period of
time over the average load demand, so a lower PAR is normally preferred due to e.g.
maintenance costs [16].
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Thus, the main contribution of this research is a novel approach to balance the
load demand from dozens of household units using both a substation transformer
and PEVs’ batteries as mobile energy storage units2 by considering the automatic
generation of solutions via the use of EAs. To this end, we are interested in
maximising, in general, the use of available energy from the PEVs’ batteries
while ensuring that each of the PEVs can complete a journey to work, where the
PEVs can be charged, and in particular, helping in the reduction of peak loads
at the transformer level by using the most quantity of energy from the PEVs’
batteries during these peak periods. This problem would be simple enough if it
was not for the dynamicity associated to the problem and if we would not care
about keeping the PAR relatively low.

To achieve this, we allow the DSM system to make fine-grained decisions
(i.e., variable amount of energy requested) by using a continuous representation
instead of using a discrete representation (i.e., turning a device/appliance on
or off resulting in feeding/getting a constant amount of energy) as normally
adopted in DSM [20].

To this end, we use a form of EAs, called Differential Evolution (DE) [21],
that allows us to achieve this. More specifically, DE uses a vector of real-valued
functions and we use them to represent an individual (potential solution) that
specifies an energy consumption scheduling vector, which in turn indicates the
amount of energy that should be taken from the PEVs’ batteries aiming at
fulfilling the goals previously described (e.g., maximising the energy consumption
available from the batteries while at the same time reducing peak loads at the
transformer level with associated constraints such as guaranteeing that each
PEV would complete a journey to work). Details on how this algorithm works
and its adoption in this research are described in Sect. 2.

1.1 Significance of This Research

From the 1980s, DSM has been studied extensively by the research community.
Analysing the research carried on DSM is difficult if we consider that there are
more than 2,000 scientific papers published only in the IEEE Xplore database.
Inspired by the work conducted by Poli [22], where the author analysed titles,
keywords and abstract of hundreds of papers, we also carried a similarity analysis
relationship between hundred of papers3 that discussed DSM and key terms of
these papers for a quick and useful interpretation of the research carried out in
this area.

As we will see, the research conducted in DSM over the last decades has
evolved significantly, and due to space constraints, we only show the visual rep-
resentation4 of the research conducted from 1985 until 2009 (572 papers were
analysed) and from 2010 until 2015 (1,841 were analysed), shown in Fig. 1.
2 In this work, we use the terms “substation transformer” and “PEV’s batteries” to

differentiate between the two sources of energy.
3 Source: IEEE Xplore database searching for “Demand-side Management”. Last

accessed date: 22/01/2015.
4 Details on how these figures were produced can be found in [22].
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Fig. 1. Analysis of the publications on ‘Demand Side Management’ Systems from 1985
until 2009 (top) and from 2010 until 2015 (bottom). Only links (similarities) with
strength greater than 40 in (a) and 60 (b) were passed to neato. The rest-length for
repulsive forces between nodes was set to 9.
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It is clear to see that some areas remain of vital importance in DSM, such
as the benefits that DSM can offer to both customers and utility companies.
There are, however, other areas of research emerging in DSM as shown at the
bottom of Fig. 1 (research conducted over the last five years). Note, for example,
the interest of investigating the impact/integration of electric vehicles in DSM.
This is shown in the very core of Fig. 1 regarding the analysis from 2010 to 2015
(bottom of the figure). Other elements worth observing are data, users, devices.

The research presented in this work deals with these elements and shows its
importance to DSM. Specifically, as mentioned previously, we are interested in
using PEVs’ batteries as mobile energy storage units to help the SG by designing
an intelligent autonomous DSM.

Energy storage units, such as pumped hydroelectric energy storage units
and compressed air energy storage units, have been with us around for sev-
eral decades [23] via [24] and they have been used to provide both energy and
ancillary services. Their use, however, have not been massively popular mainly
because there is a cost associated with their acquisition and their corresponding
installation. However, with the emergence of relatively new technologies (e.g.,
PEVs) and their relatively “easy” integration into the grid, it is necessary to
account for autonomous and intelligent algorithms to exploit their capabilities.
This in consequence can bring substantial benefits to both end-use consumers
and to the grid (e.g., reduction of peak loads, savings in electricity costs; see
[25–27] for a more detailed discussion of energy storage units’ benefits).

The rest of this paper is organised as follows. In the following section we
briefly introduce differential evolution and present our proposed approach. In
Sect. 3, we present the experimental setup used in this work and Sect. 4 discusses
the findings of our approach. Finally, in Sect. 5 we draw some conclusions.

2 Proposed Approach

2.1 Background

There are multiple EAs methods, such as Genetic Algorithms (GAs) [28], Genetic
Programming (GP) [29], Differential Evolution (DE) [21]. All these methods use
evolution as an inspiration to automatically generate potential solutions for a
given problem. They differ, mainly, in the representation used (i.e., encoding of a
solution). For example, the typical representation used in GAs is fixed bitstrings,
GP’s typical representation is tree-like structures, DE uses a vector of real-valued
functions.

In this work, we use a DE algorithm given its natural representation (i.e.,
real-valued functions). Other bio-inspired algorithms can also use this type of
representation, however, in this work we decided to use a DE given its efficiency
for global optimisation over continuous search spaces [21]. By using this type
of representation, we can have a more fine-grained action granularity (e.g., in
this work, each element in the vector represents how much energy will be taken
from the PEVs’ batteries to feed electricity to household units), instead of using a
more limited representation such as a bitstring representation that could indicate
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to take a pre-defined amount of energy (i.e., on or off) from PEVs’ batteries to
partially fulfil energy consumption from household units. We further discuss this
later in this section.

The goal of DE is to evolve NP D-dimensional parameter vectors xi,G =
1, 2, · · · , NP , so-called population, which encode the potential solutions (indi-
viduals), i.e., xi,G = {x1

i,G · · · , xD
i,G}, i = 1, · · · , NP towards the global optimum

solution (e.g., highest values when maximising a cost function). The initial pop-
ulation is randomly generated and this should be done by spreading the points
across the entire search space (e.g., this could be achieved by distributing each
parameter on an individual vector with uniform distribution between lower and
upper bounds xl

j and xu
j ). To automatically evolve these potential solutions over

generations via the definition of a fitness function, DE uses the most common
bio-inspired operators as commonly carried out in EAs: mutation and crossover
to find the global optimum solution. Each of these operators is briefly explained
in the following lines (refer to [21,30] for a detailed description on how they
work).

The mutation operator generates a mutant vector following one of the fol-
lowing strategies:

DE/rand/1

vi,G = xri1,G
+ F · (xri2,G

− xri3,G
)

DE/best/1

vi,G = xbest,G + F · (xri1,G
− xri2,G

)

DE/rand-to-best/1

vi,G = xi,G + F · (xbest,G − xi,G) + F · (xri1,G
− xi

2,G
)

DE/best/2

vi,G = xbest,G + F · (xri1,G
− xri2,G

) + F · (xri3,G
− xri4,G

)

DE/rand/2

vi,G = xri1,G
+ F · (xri2,G

− xri3,G
) + F · (xri4,G

− xri5,G
)

where indexes r1, r2, r3, r4 ∈ {1, 2, · · · , NP} are random and mutually different.
F is a real and constant factor ∈ [0, 2] for scaling differential vectors and xbest,G

is the individual with best fitness value (e.g., highest value for a maximisation
function) in the population at generation G.
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The crossover operator increases the diversity of the mutated parameter vec-
tors and is defined by:

vi,G+1 = (v1i,G+1, v2i,G+1, · · · , vDi,G+1)

where:

vji,G+1 =
{
vji,G+1 if randb(j) ≤ CR or j = rnbr(i),
xji,G otherwise

where j = 1, · · · ,D, randb(j) is the jth evaluation of a uniform random number
generator with outcome ∈ [0, 1]. CR is the constant crossover rate ∈ [0, 1]. rnbr(i)
is a randomly chosen index ∈ 1, 2, · · · ,D which ensures that ui,G+1 receives at
least one parameter value from ui,G+1.

The performance of the DE algorithm depends on different factors, such
as the values associated to the parameters (e.g., population size) as well as
the variant of the operator used (e.g., variant of the mutation operator). This,
intuitively means, that some preliminary runs would be normally required to
determine which variant of an operator performs better on a given problem. We
further discuss this in the following section.

2.2 Proposed Representation and Fitness Function

We now extend the natural DE representation to tackle the problem described
throughout the paper and proceed to define the fitness (cost) function that allows
the algorithm to automatically guide the evolutionary search.

Let N denote the number of household units (users), where the number of
household units is N �| N |. For each household n ∈ N , let ltn denote the total
load at time t ∈ T � {ti, · · · , tf}. Without loss of generality, we assume that
time granularity is 15 min. The load for household n, from ti to tf , is denoted
by:

ln � [ltin , · · · , ltfn ] (1)

From this, we can calculate the load across all household units N at each
time t ∈ [ti, tf ] as follows:

Lt �
∑
n∈N

ltn (2)

Similarly, let M denote the number of plug-in electric vehicles available in
N . For each electric vehicle m ∈ M , let Et

m denote the energy that can be
taken from the PEV at time t ∈ T � {ti, · · · , tf}. Without loss of generality, we
assume that time granularity is again 15 min. The total energy taken from an
PEV from ti until tf is denoted by:

Em � [Eti
m, · · · , Etf

m ] (3)
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We use this as a foundation to represent an individual that specifies an energy
consumption scheduling vector. More specifically, an individual is represented by:

EM �

⎡
⎢⎢⎢⎣

Eti
m1

, · · · , Etf
m1

Eti
m2

, · · · , Etf
m2

...
Eti

mM
, · · · , Etf

mM

⎤
⎥⎥⎥⎦ (4)

where each Et
m is a real value representing the quantity of energy taken from

an PEV’s battery. Each row represents the behaviour of a single PEV over the
full period; each column represents the behaviour of all PEVs at a single time-
slot. An individual in the EA is just a matrix EM , unrolled to give a vector of
real-valued functions, that is:

Eti
1 , · · · , Etf

1 , Eti
2 , · · · , Etf

2 , · · · , Eti
M , · · · , Etf

M (5)

Based on these definitions, the total energy taken across all M PEVs at each
t ∈ [ti, tf ] can be calculated as:

Et �
∑
m∈M

Et
m (6)

To automatically find good energy consumption scheduling solutions, defined
in Eq. 4, we need to define a fitness (cost) function that indicates the quality of
our evolved solution. First, we focus our attention in designing a cost function
that tries to create valid solutions in terms of using the maximum allowed energy
from each PEV (i.e., guaranteeing that a minimum state of charge (SoC) is left
at the time of departure tf ).

From Eq. 3, we know the amount of energy available from m ∈ M at any
given period of time t denoted by Et

m. Because each PEV can be charged at work
and the distance from home to work remains constant, it is fair to assume the
knowledge of a minimum SoC expressed in kW, denoted as mSoC , at the time
of departure tf for each m ∈ M , so that it can reach work and be recharged at
a lower rate. From this, we let the DE to assess a potential solution, denoted in
Eq. 4, measuring the amount of energy taken from the PEVs. This is defined as:

fl(EM ) � maximise
1

#{m ∈ M}
∑
m∈M

Em + (Em + 1)(mSoC − Eti
m)

mSoC

(
Eti

m − mSoC

) (7)

Equation 7 guides evolutionary search towards a local optimum solution since
it only encourages the finding of solutions that maximise the use of allowable
energy taken from PEVs’ batteries. Thus, there is a necessity to further enrich
this equation, so that a higher quantity of energy is taken from the PEVs’ bat-
teries whenever deemed necessary (e.g., higher consumption during high peak
periods). We achieve this by using Eqs. 2 and 6 that indicate the load across all
household units Lt at time t and the total energy taken across all PEVs Et at
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time t, respectively; and we define a degree of importance for each time slot as
tr. Putting everything together we have:

fg(EM ) � fl(EM ) + maximise
1

#{m ∈ M} tr

tf∑

t=ti

Et

Lttr
∀tr < Tr − 1

#{m ∈ M} tr

tf∑

t=ti

Et

Lttr
∀r ≥ Tr

(8)
where Tr is a threshold that denotes the number of time slots that are considered
critical (i.e., high peak period). In this work, as defined in this section and we
discuss further afterwards, a number of time slots is defined by ti and tf , where
a third is considered critical (Tr = 20).

3 Experimental Setup

3.1 Household Units

To test the scalability of our proposed approach, we simulated the consumption
of 40 and 80 household units, where each of them uses between 10 and 20 appli-
ances. As indicated throughout the paper, the goal is to use PEVs’ batteries
in an intelligent way to partially satisfy energy demand from the end-use con-
sumers (recall that we work under the assumption that the PEVs can be charged
at work).

To this end, we simulated that around 20 % of household units account for
an PEV. To make this problem dynamic, we allowed the patterns of arrival (ti),
departure (tf ) and initial State of Charge (SoC) for each of the PEVs to vary
for each of the 30 simulated working days. More specifically, the arrival and
departure time for each of the PEVs have a 90-minute time frame starting at
ti = 17:00 and tf = 6:30, respectively (i.e., arrival time could be between 17:00
and 18:30, whereas departure time could be between 6:30 and 8:00). The initial
SoCti for each of the PEVs for each of the simulated days is set between 48 %
and 60 % and the final SoCtf is set between 30 % and 35 % to allow each PEV
to reach work. Table 1 summarises the parameters used to simulate our scenario.
We ran our simulations for a period of 30 days of simulated time.

3.2 Scenarios

As indicated in Sect. 2, we defined a bottom-up approach, where we defined,
first, a fitness function that tries to maximise the energy that can be taken from
the PEVs’ batteries while ensuring that each of them reaches work, described in
Eq. 7. We then enriched the fitness function by trying to also reduce the highest
load demands at the substation transformer, described in Eq. 8 (i.e., use the most
amount of energy from the batteries at high-peak time while at the same time
ensuring the PAR remains low). We tested both fitness functions for 40 and 80
household units, resulting in four different scenarios.
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3.3 Differential Evolution

As mentioned in Sect. 2, differential evolution’s performance, as any other
evolution-based algorithm, depends, among other things, on the values asso-
ciated to the parameters that need to be specified for the algorithm (e.g., popu-
lation size, number of generations), in general, and in the type of operator used,
in particular.

No a priori knowledge is available to presume which mutation operator will
perform better in the previously defined problem. To this end, we executed 30
independent runs of our proposed approach for each of the mutation variants,
e.g., DE/rand/1, DE/best/1 (1505 independent runs in total to find only the
best mutation strategy) using the first proposed fitness function (Eq. 7) which
maximises the energy taken from 11 PEVs’ batteries to complement the energy
consumption of 40 household units averaged over 30 days. Figure 2 shows the
performance by measuring the average of best fitness per generation for each of
the five mutation variants, using a population size of 500 individuals and 200
generations.

Clearly, the mutation strategy DE/rand/2 achieved the best performance
and we used it to run our experiments to automatically find a (nearly) optimal
solution. To obtain meaningful results, we performed 30 independent runs for
each of the scenarios explained in the previous paragraphs (we executed 30 * 4
runs in total6). number of generations was reached.

5 30 independent runs * 5 variants of the mutation operator.
6 30 independent runs, 4 different scenarios (i.e., 40 and 80 household units, trying

to maximise: (a) energy consumption from PEVs, and (b) energy consumption from
PEVs while also considering reducing highest load peaks; for each of the set of
household units used in this work).
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Table 1. Summary of parameters used
for our smart grid system.

Parameter Value

Number of household

units

40, 80

Number of appliances Uniform in [10, 20]

Number of PEVs ≈20% of houses

have one PEV

Arrival and departure

time

ti = [17:00,18:30]

tf = [6:30,8:00]

Frequency of making

a decision

15min

Number of times slots T 60

State of Charge at ti Uniform in [48, 60]

State of Charge at tf Uniform in [30, 35]

Table 2. Summary of parameters used
for our evolutionary algorithm.

Parameter Value

Population size 500

Length of the

individual

T (see Table 1)

Height of the individual Number of PEVs (see

Table 1)

Generations 200

Crossover rate 0.5

Mutation strategy DE/rand/2

Elitism 1 individual

Termination criterion Maximum number

of generations

Independent runs 30

As mentioned in Sect. 2, every element of the DE vector represents how much
energy can be taken from the batteries of the PEVs. We make a decision every
15 min. Thus, the length of the individual that represent the solution is the num-
ber of time slots defined between 17:00 and 8:00am, whereas the height is defined
by the number of electric vehicles used, as defined in Eq. 4. The parameters used
in our experiments are summarised in Table 2.

4 Results

In the following paragraphs, we will analyse: (a) how the PEVs’ batteries were
used to partially satisfy the demand of a set of household units, (b) when the
highest consumption from PEVs’ batteries occurred, and finally, (c) the implica-
tions of the new consumption model via the analysis of the peak-to-average-ratio.

4.1 Maximising Energy Consumption from PEVs’ Batteries

Let us start analysing our approach on how the batteries of the PEVs helped
to partially satisfy the consumption demand from a set of household units. The
averaged consumption over a period of 30 days of these household can be seen
in Fig. 3(a, b) and (c, d) for 40 and 80 houses, respectively.

In the left-hand side of this figure, we show the distribution of consumption
of both transformer and PEVs’ batteries proposed by the differential evolution
algorithm, when trying to maximise the consumption of energy from the PEVs’
batteries via Eq. 7. More specifically, it aims at using all the possible energy
available from the batteries while guaranteeing that each PEV has a minimal SoC
at the time of departure (see Table 1) that guarantees that each PEV will reach
work. The white-filled bars represent the electricity taken from the substation
transformer whereas the remaining consumption to fulfil the load demand is
taken from the PEVs’ batteries. The latter is shown by the black-filled bars.
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Fig. 3. Average of 30-day energy consumption for 40 (top) and 80 (bottom) household
units, each using between 10–20 appliances. The consumption of energy from the trans-
former alone is shown by the white-filled bars whereas the black-filled bars represent the
consumption taken from electric vehicles’ batteries. Maximising energy consumption
from electric vehicles only and maximising energy consumption from electric vehicles
while considering also reducing highest load peaks are shown in the left-hand side and
right-hand side of the figure, respectively.

Because we are interested in using the PEVs’ batteries as mobile energy
storage units, we are particularly interested in seeing how the energy consump-
tion from these is managed by the differential evolution algorithm. In the first
instance of our algorithm (i.e., maximising the energy consumption from the
batteries of PEVs with associated constraints as formally described in Eq. 7, as
mentioned previously), it is expected that the energy taken from the batteries
would not follow a particular pattern (e.g., there is no correlation between the
amount of energy consumption from PEVs and the energy needed by a num-
ber of household units). Indeed, this is the case as seen in the left-hand side of
Fig. 3. For example, notice how the consumption from PEVs’ is proportionally
similar during both high-peak (e.g., 18:30–19:30) and low-peak periods (e.g.,
22:00–23:00).
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40 houses trying to maximise the use of PEVs’ batteries while attempting to reduce high peak loads

40 houses trying to maximise the use of PEVs’ batteries

Time of day (15 mins. granularity)
17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8

C
on

su
m

pt
io

n 
(k

W
h)

0

10

20

30

40

50

60

70

Day5

Time of day (15 mins. granularity)
17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8

C
on

su
m

pt
io

n 
(k

W
h)

0

10

20

30

40

50

60

70

80

90
Day10

Time of day (15 mins. granularity)
17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8

C
on

su
m

pt
io

n 
(k

W
h)

0

10

20

30

40

50

60

70

80

90

Day15

Time of day (15 mins. granularity)
17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8

C
on

su
m

pt
io

n 
(k

W
h)

0

10

20

30

40

50

60

70

80

90

Day15

Time of day (15 mins. granularity)
17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8

C
on

su
m

pt
io

n 
(k

W
h)

0

10

20

30

40

50

60

70

80

90

Day25

Time of day (15 mins. granularity)
17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8

C
on

su
m

pt
io

n 
(k

W
h)

0

10

20

30

40

50

60

70

80

Day30

Fig. 4. Consumption per day (only 6 days chosen randomly) for 40 household units
using each between 10 and 20 appliances. The consumption of energy from the trans-
former alone is shown by the white-filled bars whereas the black-filled bars represent
the consumption taken from electric vehicles batteries. Maximising energy consump-
tion from electric vehicles only is shown in the first two rows and maximising energy
consumption from electric vehicles while considering also reducing highest load peaks
is shown in the last two rows.

The situation is more encouraging when we consider the second instance of
our algorithm (i.e., maximising energy consumption from PEVs’ batteries while
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80 houses trying to maximise the use of PEVs’ batteries while attempting to reduce high peak loads

80 houses trying to maximise the use of PEVs’ batteries
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Fig. 5. Consumption per day (only 6 days chosen randomly) for 80 household units
using each between 10 and 20 appliances. The consumption of energy from the trans-
former alone is shown by the white-filled bars whereas the black-filled bars represent
the consumption taken from electric vehicles batteries. Maximising energy consump-
tion from electric vehicles only is shown in the first two rows and maximising energy
consumption from electric vehicles while considering also reducing highest load peaks
is shown in the last two rows.

considering high-peak periods as formally described in Eq. 8), shown in the right-
hand side of Fig. 3. As it can be observed, the proposed enriched fitness function
is able to automatically produce results that can reduce the load peaks from
the substation transformer by using more electricity from the PEVs’ batteries.
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Fig. 6. Energy quantity taken from 11 (a, b) and 21 (c, d) electric vehicles over the
range of time period studied in this work, from 17:00 until 8:00 (shown in the x-axis),
for 30 days (shown in the y-axis) to help with the energy consumption of 40 (a, b)
and 80 (c, d) household units. Darker-filled circles represent higher energy quantity
taken from the PEVs’ batteries. The enriched cost function, described in Eq. 8, follows
a well-defined desired pattern (b, d), whereas the cost function that tends to find
local optimum solutions, described in Eq. 7, tends to have a rather undesirable random
pattern (a, c).

For example, notice how the consumption of energy from batteries is higher
during high-peak periods (e.g., 18:30–19:30) and lower during low-peak periods
(e.g., 22:00–23:00). Details on the consumption, per day for six days, can be seen
in Figs. 4 and 5 when using 40 and 80 household units, respectively. The first
two rows and the last two rows of these figures show the behaviour observed
when using Eqs. 7 and 8, respectively.

4.2 Consumption from PEV’s Batteries

In the previous paragraphs, we discussed and showed the results obtained by our
approach using two fitness (cost) functions, formally described in Eqs. 7 and 8.
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It is clear that the latter function is able to use a higher quantity of energy from
the PEVs’ batteries during high-peak periods compared to the effects observed
when using the former function, as shown in the right-hand and left-hand side of
Fig. 3, respectively, using 40 and 80 household units. This averaged result over a
period of 30 simulated working days, however, does not inform us in detail when
the highest consumption from batteries occurred (e.g., when and how much
consumption from the batteries for every of the simulated days occurred). Some
insight can be gained when analysing some days (see Figs. 4 and 5) but this still
is limited since, due to page-limit constraints, not all days can be shown.

To this end, we kept track of the consumption from the PEVs’ batteries dur-
ing the simulated period of time (i.e., 17:00–8:00) for every day of the simulated
days. The patterns of such consumption are shown in Fig. 6(a, b) and (c, d) for
40 and 80 household units, respectively.

Let us start our analysis when maximising the energy that can be taken from
the batteries while ensuring that each PEV has the minimum SoC at the time of
departure, defined in Eq. 7. The consumption pattern of this is shown in Fig. 6(a)
and (c) for 40 and 80 household units, respectively. It should be noted that the
higher the consumption from batteries is, the darker the dot. We can see that a
random pattern is achieved by the cost function shown in Eq. 7. That is, for every
recorded day, shown in the y-axis, the amount of energy taken from the batteries
is rather random regardless of the period time, shown in the x-axis, except from
17:00–18:30 and 6:30–8:00, where the consumption from batteries is low. This
can be explained due to the availability of PEVs during these periods. That is,
as indicated in Sect. 3, each PEV has its own time of arrival and departure which
varies during these periods of time.

We continue our analysis on the proposed enriched maximisation cost func-
tion, see Eq. 8, that aims at using the most amount of energy from the batteries
of the PEVs while ensuring that each has a minimum SoC at the time of depar-
ture, and that tries to reduce the highest peak loads. The consumption pattern
from the batteries is shown in Fig. 6(b) and (d) for 40 and 80 household units,
respectively. This is a mirror image of what we discussed in the previous para-
graph. That is, there is a well-defined pattern for each of the simulated days,
shown in the y-axis, during the period of study, shown in the x-axis of the figure.
We can observe that this cost function indeed achieves at using the most amount
of energy when it is needed the most (high-peaks) as shown by the darker-filled
squares while ensuring that the constraints are not violated (e.g., minimum SoC
at the time of departure).

4.3 Peak-to-Average Ratio

As indicated previously, the peak-to-average ratio (PAR) is calculated by the
maximum load demand for a period of time over the average load demand for
the same period. It has been shown that a lower PAR is preferred [16].

We calculated the PAR considering the consumption from the substa-
tion transformer. Figure 7 shows the PAR for 40 (left-hand side) and 80
(right-hand side) household units for each of the 30 working simulated days
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Fig. 7. Peak-to-average ratio (PAR) load demand achieved by our proposed approach
when trying to maximise energy consumption from PEVs’ batteries (black-filled bars)
vs. when trying to maximise energy consumption from PEVs’ batteries while aiming
at reducing highest load peaks (white-filled bars), for 40 and 80 household units shown
at the left-hand side and right-hand side of the figure, respectively. A lower PAR is
preferred.

using our proposed approach. It is easy to observe that a higher PAR is achieved
by the fitness (cost) function formally defined in Eq. 7, which goal is to use the
most amount of energy from PEVs’ batteries while at the same time aims at
guaranteeing that each PEV has a minimum SoC at the time of departure com-
pared to that PAR achieved by the enriched fitness function formally described
in Eq. 8 that is built on the top of Eq. 7, which also tries to reduce the highest
peak loads.

This, in fact, is to be expected given that the fitness function described in
Eq. 8 does consider an associated ranking system (recall that a third of time slots
are considered critical, i.e., high peak period) that is able to reflect smoothly the
consumption from the substation transformer as shown by the low PAR achieved
by this enriched fitness function for each day of the 30 simulated days, denoted
by the white-filled bars in Fig. 7.

5 Conclusions

Demand-Side Management (DSM) refers to programs that aim to control the
energy consumption at the customer side of the meter. Different techniques have
been proposed to achieve this. The most popular techniques are those based on
smart pricing (e.g., critical-peak pricing, real-time pricing). One major limitation
of smart pricing is the fact that the electricity price is proportional to the electric-
ity demand. This is particularly true for the time-of-use smart pricing adopted
in some countries, where there is a financial incentive to use the electricity at
night given its lower cost compared to its cost during day time. To alleviate this
problem, we proposed the development of a demand-side autonomous intelligent
management system that exploit plug-in electric vehicles’ (PEV) batteries. More
precisely, our system uses the PEV’s batteries to partially and temporarily fulfil
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the demand of end-use consumers instead of using only the electricity available
from a substation transformer.

To this end, we used an stochastic bio-inspired method, differential evolution,
given its natural representation (encoding of a solution) that allows to make
fine-grained decision in terms of the exact energy that can be taken from PEVs’
batteries to partially and temporarily fulfil energy requirements from a set of
household units. To effectively do so, we proposed two fitness (cost) functions
that achieve: (a) to use the maximum allowed energy from PEVs while still
guaranteeing they can complete a journey, and (b) to use the maximum energy
consumption from PEVs batteries while considering reducing high-peak periods.

From experimental results, it is clear that the enriched fitness function is
able to use the most amount of energy from PEVs, it is also able to reduce peak
loads and it is also able to achieve a lower PAR compared to the other ‘simple’
fitness function proposed in this work.
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6021, pp. 62–73. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12148-7 6
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Abstract. A property of particles in Particle Swarm Optimization
(PSO), namely, particle convergence time (pct) is a subject of theoreti-
cal and experimental analysis. For the model of PSO with inertia weight
a new measure for evaluation of pct is proposed. The measure evalu-
ates number of steps necessary for a particle to obtain a stable state
defined with any precision. For this measure an upper bound formula of
pct is derived and its properties are studied. Four main types of particle
behaviour characteristics are selected and discussed. In the experimental
part of the research effectiveness of swarms with different characteristics
of their members are verified. A new type of swarm control improving
efficiency of a swarm in escaping traps of local optima is proposed and
experimentally verified.

1 Introduction

Particle swarm optimization (PSO) [1] belongs to a big family of modern heuris-
tic optimization methods. A number of versions of PSO has already been pro-
posed sharing the same paradigm of stochastic, population-based method of
exploration in the given space of solutions in searching for the best one. In our
research we selected one of the earlier versions of PSO proposed in [2]. Like in
other methods, the population consists of members called here particles which
represent solutions from the given space. Particles are also equipped with mem-
ories which store attractors, that is, solutions best found so far by the parti-
cles. A working group of particles controlled by the method is called a swarm.
After the initialization of a swarm the cycle of iterations performs the search
process. The distinctive features of PSO are: (1) application of particle memory
as well as the mechanism of memory sharing by groups of neighbouring solutions,
(2) the method of finding new solutions based on the idea of displacement orig-
inated from the real-world. Unlike other metaheuristics, every iteration consists
of two main steps: particles memory update and the displacement of particles
within the space of solutions. In PSO less-fit particles do not die, that is, there
is no “survival of the fittest” mechanism typical for the evolutionary approach.
The rules of displacement make use of the information from the memory and
are expressed by equations which may differ to each other for different versions
c© Springer International Publishing AG 2017
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DOI 10.1007/978-3-319-48506-5 10
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of PSO. Particularly, in the version of PSO which we selected for analysis the
rules of displacement use the inertia weight parameter.

Numerous applications of PSO confirmed its usefulness and potential but
also motivate for studying their theoretical properties. Particularly, a particle
stability analysis is a subject of great interest. One of the main aims is estimation
of particle parameter ranges guaranteing the convergent movement within the
given boundaries of the search space. For the purpose of theoretical analysis
some assumptions concerning randomness have always to be made. The most
restricted deterministic approach simply eliminates stochastic coefficients from
the velocity equation [3]. Other approaches implement expected values of the
particle locations [4,5] (which is called a first order stability analysis), or the
variance of the locations (a second order stability analysis) [6–8].

In the presented research we study behaviour of a particle which parame-
ters belong to the ranges guaranteing the convergent movement, particularly,
we evaluate the time necessary for a particle to enter the convergent state. This
kind of a swarm property was already investigated for swarms consisting of a
number of particles [9]. In a series of experiments for different particle configu-
rations authors evaluated number of iterations necessary to satisfy the assumed
convergence condition. However, in our paper we propose a new method of eval-
uation of a particle convergence time based on the deterministic model of PSO
with inertia weight [5] and a new convergence condition. This means that the
analysis concerns a particle model based on the following assumptions:

1. the particle moves in one-dimensional search space — there is no need to
consider n-dimensional velocity vectors due to the fact, that all the velocity
parameters are evaluated individually for each of the search space coordinates
and they do not influence to each other in any way,

2. random values in the velocity equation are replaced by constant values, thus
the rules of the particle movement become deterministic,

3. both the local and the global attractor remain in the same place of the search
space over the entire time of the modelled particle behaviour,

4. there is just one particle to observe — due to the previous assumption that
global attractor remains unchanged, no communication between particles
exists in fact,

5. values of parameters in the velocity equation belong to the ranges guarantee-
ing convergent movement of the modelled particle.

Thus stability is defined as:
lim

t→∞ x(t) = y (1)

where y is a constant point in the search space.
The selected model based on the five assumptions allows to generate conver-

gent trajectories of particle locations over space. However, it has to be stressed
that the shape of the trajectory does not influence the proposed measure and
the only important information is the number of steps necessary for the particle
to get and stay in the sufficiently close neighborhood of y.
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The paper consists of six sections. In Sect. 2 the model of PSO with inertia
weight is briefly described. Section 3 presents the proposed new measure of par-
ticle convergence time. Discussion of the new measure properties can be found
in Sect. 4. Section 5 presents the results of experiments with swarms consisting
of particles with different types of characteristic. Section 6 concludes the paper.

2 The PSO Model

The PSO model with inertia weight implements the following velocity and posi-
tion equations: {

vt+1 = w · vt + ϕ1(yt − xt) + ϕ2(y∗
t − xt),

xt+1 = xt + vt+1
(2)

where ϕ1 = r1c1, ϕ2 = r2c2, and c1, c2 represent acceleration coefficients,
r1, r2 ∼ U(0, 1). In the further analysis the stochastic components ϕ1 and ϕ2 are
substituted by constant values. We also assume that both attractors are constant
over time.

From this pair of equations a recursive formula can be derived [5]:

xt+1 = (1 + w − ϕ1 − ϕ2)xt − wxt−1 + ϕ1y + ϕ2y
∗ (3)

which allows to evaluate the particle location, assuming that its two previous
locations and its attractor are known. This way a basic simplified dynamic sys-
tem can be defined:

Pt+1 = M × Pt, (4)

where:

– Pt — the particle state made up of its current position xt and the previous
one xt−1.

– M — the dynamic matrix whose properties determine the transformations of
the particle state.

Results from dynamic system theory say that the transformations of the particle
state depend on the eigenvalues of M . Further analysis of the dynamic matrix
originated from Eq. (3) allowed to define the region in the parameters space
where eigenvalues of M are smaller than 1. All the configuration parameters sets
originated from this region guarantee that the particles do not diverge during
the process of search.

In [5] authors show that the particle equilibrium point is a weighted average
of its personal best y and global best y∗ positions: ϕ1y+ϕ2y∗

ϕ1+ϕ2
. However, just for

simplicity of calculations and without loss of generality we can assume, that
y∗ = y. In this case we can substitute φ for ϕ1 + ϕ2 and Eq. (3) is reformulated
as follows:

xt+1 = (1 + w − φ)xt − wxt−1 + φy (5)
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Eventually, the following stable region, that is, a set of convergent configurations
satisfies the following system of inequalities was derived:⎧⎨

⎩
w > 0 ∧ w < 1,
φ > 0,
w > 0.5φ − 1

(6)

Since the first presentation of the above-mentioned boundaries of the stable
region a number of publications appeared discussing the problem of boundaries
definition based on different assumptions concerning stochastic components in
the velocity equations and stability of attractors. For more details the reader
is referred to [6,7,10–12]. Particularly, in [12] a set of inequalities coinciding
with Eq. (6) has been derived. In our research presented in the further text
we implement the stable region as it is defined by Eq. (6) having in mind that
constraint w > 0 represents just the intuitive assumption that inertia of a moving
object should not be negative.

3 The Proposed Measure

3.1 Particle Convergence Time

Even if the stable region is given, it is also interesting to know the number of steps
necessary for the particle to obtain its stable state for different configurations
(φ,w). In this case “obtaining stable state” means that the distance between
current and the next location of the particle is never greater than the given
threshold value δ.

Lets define a set of natural numbers S(δ) for a given δ > 0 such that:

s ∈ S(δ) ⇐⇒ |xt+1 − xt| < δ for all t ≥ s. (7)

We define the particle convergence time (pct) for given δ > 0 as follows:

pct(δ) = min{s ∈ S(δ)}. (8)

The particle convergence time pct is the minimal number of steps necessary
for the particle to obtain its stable state as defined above. For estimation of the
particle convergence time we use Eq. (3).

3.2 Upper Bound Formula for pct

Recurrent equations are difficult to analyse, however, an explicit closed form of
the recurrence relation Eq. (5) is also known [5]:

xt = k1 + k2λ
t
1 + k3λ

t
2, (9)
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where

k1 = y, (10)

k2 =
λ2(x0 − x1) − x1 + x2

γ(λ1 − 1)
, (11)

k3 =
λ1(x1 − x0) + x1 − x2

γ(λ2 − 1)
, (12)

x2 = (1 + w − φ)x1 − wx0 + φy, (13)

λ1 =
1 + w − φ + γ

2
, (14)

λ2 =
1 + w − φ − γ

2
, (15)

γ =
√

(1 + w − φ)2 − 4w. (16)

Thus, the distance between two subsequent values of the particle locations
xt+1 and xt equals:

|xt+1 − xt| = |k2λt
1(λ1 − 1) + k3λ

t
2(λ2 − 1)|. (17)

From the triangle inequality it follows that:

|xt+1 − xt| ≤ |k2||λ1|t|λ1 − 1| + |k3||λ2|t|λ2 − 1|. (18)

We are interested in the minimal number of steps s after which the condition

|xt+1 − xt| < δ (19)

is satisfied for all t ≥ s. To obtain this we employ the fact, that:

|a| < δ/2 ∧ |b| < δ/2 ⇒ |a + b| < δ (20)

where | · | is the absolute value.
Thus, we look for such t1 and t2, that:

|k2||λ1|t1 |(λ1 − 1)| < δ/2, (21)

|k3||λ2|t2 |(λ2 − 1)| < δ/2. (22)

and we get:

t1 >
ln δ − ln(2|k2||λ1 − 1|)

ln |λ1| , (23)

t2 >
ln δ − ln(2|k3||λ2 − 1|)

ln |λ2| . (24)

Now, we define s = max(t1, t2), where t1 and t2 are minimal natural number
satisfying Eqs. (23) and (24) respectively. From (20), (21) and (22) it follows
that for all t ≥ s the condition (19) is satisfied.
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In the case where γ is a complex number consisting of just an imaginary
value, that is, when (1 + w − φ)2 < 4w, the reasoning presented above may be
simplified. In this case the following is satisfied: |λ1| = |λ2| and |λ1−1| = |λ2−1|.
Let’s denote: |λ| = |λ1| = |λ2| and |λ − 1| = |λ1 − 1| = |λ2 − 1|. Then, Eq. (18)
can be expressed as:

|xt+1 − xt| ≤ |λ|t|λ − 1|(|k2| + |k3|). (25)

In this case we look for such t that:

|λ|t|λ − 1|(|k2| + |k3|) < δ, (26)

which is equivalent to

t >
ln δ − ln(|λ − 1|(|k2| + |k3|))

ln |λ| , (27)

Now, we define s as a minimal natural number t satisfying Eq. (27). From (25)
and (27) it follows that for all t ≥ s the condition (19) is satisfied.

For both cases, that is, real and imaginary value of γ, the defined number of
steps s satisfies condition (7). Due to the fact, that pcs(δ) is defined as a minimal
number satisfying condition (7), we get pcs(δ) ≤ s.

Thus, Eqs. (23), (24) and (27) give us the analytic upper bounds for the
particle convergence time, which is denoted as pctb(δ). The explicit formula for
pctb(δ) is

pctb(δ) = max
(

ln δ − ln(2|k2||λ1 − 1|)
ln |λ1| ,

ln δ − ln(2|k3||λ2 − 1|)
ln |λ2|

) (28)

for real value of γ and

pctb(δ) =
ln δ − ln(|λ − 1|(|k2| + |k3|))

ln |λ| (29)

for imaginary value of γ.

4 Visualizations of pctb Characteristics

Particle convergence time depends on three groups of parameters: values of fac-
tors in a velocity update rule, initial localization and velocity and fitness land-
scape. Parameters from the first group, that is, φ and w define character (or
temperament) of a particle. An example graph of pctb(φ,w) is presented in the
subsection below. The next subsection presents example graphs of pctb(x0, x1),
that is, convergence times of particles with selected characters respectively to
their starting conditions. Particle trajectories for respective types of character
are also presented. The third subsection shows how pctb(x0, x1) and pctb(x0, v)
graphs vary respectively to the changes in a particle character.
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4.1 Particle Convergence Time for Different Types of Particles

The characteristics of pctb as a function of particle configuration parameters φ
and w share common shape presented in Fig. 1. The Figure depicts the pctb(φ,w)
characteristic obtained from a grid of evaluation points starting from a config-
uration [φ = 0.025, w = 0.044] and changing with step 0.05 in both directions.
This choice of method for the function graph generation is due to the fact, that
γ appears in the denominator of Eqs. (11) and (12), so, it cannot equal zero.
Unfortunately, this is the case, when w = 1 + φ − 2

√
φ, that is, there exist

points in the stable region for which the upper bound for their convergence time
can be evaluated neither with formula (28) nor (29). For better visibility the
pctb(φ,w) axis has logarithmic scale and the evaluation points from outside the
stable region have assigned the constant value 5000.
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Fig. 1. Particle convergences pctb(φ, w) for example starting conditions: x0 = 1 and
x1 = −8.1.

Figure 1 shows that when the inertia weight w is low the convergence times
are also low and increase as the inertia grows. Additionally, pctb increases also
for the cases when φ approaches boundary values, both left and right, however,
for the right boundary the increase is much higher than for the left.

4.2 pctb as a Function of Initial Location and Velocity

For φ and w values satisfying Eq. (6) the shapes of pctb(x0, x1) can be classified
into four main types (samples for δ = 0.0001 are depicted in Fig. 2).

A: convergence is fast when the velocity is low (x1 close to x0) and the initial
location x0 is irrelevant in every case;

B: a transitional state between states A and C;
C: convergence is fast when the velocity is adjusted to the location and directed

toward the attractor;
D: the particle has almost no inertia, so, the less distance from x1 to the attrac-

tor, the less value of pctb.
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(e) localizations of selected configurations for types A,
B, C and D in the configuration space (φ, w)

Fig. 2. Graphs of pctb(x0, x1) for selected configurations (φ, w) which represent four
types of characteristics: A, B, C and D.

Figure 3 shows subsequent locations over time for particle configurations
selected for presentation in Fig. 2 and for three different starting locations each.
Graphs of particle trajectories similar to the ones presented in Fig. 3 can be also
found in [4], however, in that case they were obtained for different particle para-
meter space. Graphs with trajectories can be also found in other publications,
particularly in [5], however, they are not classified respectively to the subarea in
the stable region of the configuration space they appear.

In Fig. 3(a) “A” particles are represented by three cases: with low (start-
ing points x0 and x1 at (8,8.1)) and high initial velocity: ((8,1.1) and (1,8.1)).
High inertia and weak attraction toward y make the movement smooth and
the subsequent steps short in every case. For the high initial velocity oscilla-
tions around the attractor are higher. In the case of “B” particles (Fig. 3(b))
oscillations appear in every graph, however, the length of subsequent steps is
irregular: when the particle moves away from y with high velocity, sometimes
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(a) type A:(x0, x1) ∈ {(8, 1.1), (8, 8.1), (1, 8.1)}
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(b) type B:(x0, x1) ∈ {(4, 9), (4, 4), (4, −9)}
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(c) type C:(x0, x1) ∈ {(4, 9), (4, −4), (4, −9)}
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(d) type D:(x0, x1) ∈ {(4, 9), (9, 1), (4, −9)}

Fig. 3. Particle trajectories for the four types of characteristics: A, B, C and D, and for
three example starting locations; a view of 150 locations (top figures) and a close-up
of the first 30 locations (bottom figures).

the attracting force almost stops it, velocity decreases and the particle turns
back slowly, whereupon runs toward the attractor with a high velocity again.
Figure 3(c) presents a “zig-zag” trajectories of “C” particles which amplitude
cyclically increases and decreases. The amplitude of oscillations is less when the
initial velocity is adjusted to the initial location and directed toward the attrac-
tor. Clearly, the fastest convergence of pctb is obtained when x1 has the same
absolute value as x0 but the opposite sign. Figure 3(d) also presents a “zig-zag”
trajectories of “D” particles but without cycles in the magnitude of amplitude.
In this case particle also converges to the attractor faster when the initial veloc-
ity is adjusted to the initial location, however, in this case the velocity has to be
adjusted so as to locate x1 in the nearest neighborhood of the attractor.

Finally, it is worth noting that different types of trajectories appear for dif-
ferent types of particle characteristics, which confirms the proposed selection of
types and allows one to assume that none of the selected types is a subtype of
any other.

4.3 Properties of pctb(φ, w)

One can observe that for all the selected configurations (φ,w) graphs of
pctb(x0, x1) printed in Fig. 2 have regular, symmetric shape. For every case the
minimum value pctb(x0, x1) is in (0,0) which is obvious when we remind, that this
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Fig. 4. Angle coefficient for major axis ama(φ, w).
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Fig. 5. Eccentricity ε(φ, w).

is the location of the attractor y∗. Clearly, when the first and the second location
of a particle is the same as its attractor, the particle has already obtained its
equilibrium state and no further move of the particle will be observed, that is,
its convergence time equals zero.

The contours of pctb(x0, x1) printed on the plane X0X1 resemble ellipses. An
ellipse can be characterised by two parameters: an angle coefficient for the major
axis (ama) and an eccentricity (ε), that is, a ratio between the minor and the
major radius. We assume, that for a given configuration (φ,w) all the contours
are ellipses and have the center in the point x0 = 0;x1 = 0. One can observe,
that the values of ama and ε for different configuration (φ,w) differ to each other.
Pictures of the two characteristics: ama(φ,w) and ε(φ,w) are presented in Figs. 4
and 5 and described below.
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The Angle Coefficient for the Major Axis ama(φ, w). For estimation of
ama(φ,w) a linear regression method was used. For every configuration (φ,w)
a set of 1000 random pairs (x0, x1) is generated such that pctb(x0, x1, φ, w) for
each of them is not greater than a fixed limit L. This way one can obtain a
cloud of points having the shape of a contour for pctb(x0, x1, φ, w) = L on the
plane X0X1. L is always selected so as to fit all the points in the cloud into the
range [−10, 10] for both x0 and x1. Then, the equation y = ax + b for the linear
regression line of this group of points is calculated. Obtained coefficient a in the
equation represents just the requested ama(φ,w) value. It is worth noting, that
for all the configurations (φ,w) in the grid the obtained coefficient b was always
equal zero, that is, the assumption concerning central localization of ellipses
(contours) has never been denied.

Figure 4 shows the mean values of the angle coefficient for major axis ama of
contours of pctb(x0, x1) obtained from a series of 100 independent evaluations.
The means are generated for a grid of configurations (φ,w) starting from [φ =
0.04, w = 0.03] and changing with step 0.05 in both directions (which gave
80×20 points). All means for the configurations (φ,w) from the stable region fit
the range [−1, 1]. The configurations from outside the stable region have assigned
a constant value of minus one.

The Eccentricity ε(φ, w). A graphical visualisation of the eccentricity of con-
tours of pctb(x0, x1) is presented in Fig. 5. This figure is also generated for a
grid of configurations (φ,w) starting from [φ = 0.04, w = 0.03] and changing
with step 0.05 in both directions and shows means obtained from a series of 100
independent evaluation. The contour of pctb(x0, x1) for the selected L can be
sketched quite precisely by a convex hull of the cloud of points already gener-
ated for evaluation of ama from the equation of the linear regression line. The
convex hull is found with a method of Graham scan [13]. Among the points from
the convex hull two of them located in the shortest and the longest distance
from the centre of the cloud, that is, from the point (0, 0) are selected. The
two distances approximate lengths of minor (rmi) and major (rma) radius of the
ellipse respectively. Thus, the eccentricity equals: ε = rmi/rma. As in the case of
depicting ama(φ,w), ε(φ,w) for the configurations from outside the stable region
have assigned a constant value, however, in this case they are set to 0.00001.

Classification of Particles. The parameters ama(φ,w) and ε(φ,w) allow to
identify the four types of particles defined in Subsection 4.2. Type B particles are
characterised by high values of eccentricity (close to one) whereas the remaining
types have lower values. The remaining three types can be identified respectively
to the value of ama(φ,w). The highest values close to one of ama(φ,w) have
particles of type A, the lowest values close to minus one – particles of type C,
and the moderate values, around zero, has particles of type D.
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4.4 Transformations of pctb Characteristics

Figures 4 and 5 show the ama(φ,w) and ε(φ,w) characteristics which allows to
imagine the way of the ellipse shape transformation when the φ and w para-
meters vary. For better understanding of these transformations, below, three
example series of pctb figures are depicted. The examples show, how the con-
tours change from one to another. Example series: Q1, Q2 and Q3 of pctb graph
pairs: pctb(x0, x1) and pctb(x0, v) for δ = 0.0001 are presented in Figs. 7, 8 and 9
respectively. Localizations of selected series of configurations: Q1, Q2 and Q3 in
the configuration space (φ,w) can be found in Fig. 6.

In Fig. 7 the first series of figures called Q1 shows the transformations when
the inertia weight w is high, that is, w = 0.96 and φ varies from minimal to
maximal values within the stability region: φ ∈ {0.06, 0.46, 2.46, 3.91}. For small
values of φ the most important for pctb is the initial velocity: when it is small, the
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Fig. 6. Localizations of configuration series presented in top three rows of pictures: Q1
(marked as circles), Q2 (triangles), and Q3 (squares) in the configuration space (φ, w).
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Fig. 7. Particle convergence times pctb for a series Q1: fixed w = 0.96 and φ ∈
{0.06, 0.46, 2.46, 3.91}; the top figures: pctb(x0, x1); the bottom figures: pctb(x0, v); the
white area in figures for pctb(x0, v) maps to the domain defined for pctb(x0, x1).
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Fig. 8. Particle convergence times pctb for a series Q2: fixed φ = 1.76 and w ∈
{0.06, 0.26, 0.71, 0.96}; the top figures: pctb(x0, x1); the bottom figures: pctb(x0, v); the
white area in figures for pctb(x0, v) maps to the domain defined for pctb(x0, x1).
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Fig. 9. Particle convergence times pctb for a series Q3: fixed w = 0.06 and φ ∈
{0.06, 0.71, 1.36, 2.11}; the top figures: pctb(x0, x1); the bottom figures: pctb(x0, v); the
white area in figures for pctb(x0, v) maps to the domain defined for pctb(x0, x1).
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pctb is low, otherwise, the number of steps necessary to reach the attractor grows
rapidly. On the opposite end of series Q1 one can observe the case when for small
values of pctb the velocity should be adjusted to the distance to the attractor.
The further is the particle from the attractor, the higher initial velocity is needed
to reach the attractor in small number of steps. In every case the velocity must
be directed toward the attractor.

In Fig. 8 the series Q2 is presented. The attractor coefficient is fixed, that is,
φ = 1.76 and the inertia weight varies: w ∈ {0.06, 0.26, 0.71, 0.96}. In every case
for the sake of pctb minimization the initial velocity should be adjusted to the
initial location of the particle. However, for small values of the inertia weight
a small error in adjustment causes large increase of pctb value, whereas, large
values of inertia make this change less abrupt, that is, the system is more stable.

The series of characteristics Q3 is depicted in Fig. 9. In this case the inertia
weight w is low, that is, w = 0.06 and φ ∈ {0.06, 0.71, 1.36, 2.11}. As it is in
the series Q1, when φ is small the initial location is almost negligible and the
most influential parameter is velocity: when v is close to zero, the pctb is the
smallest. In the Q3 series the boundary cases represent configurations sensitive
to the error of velocity vs. location adjustment, that is, the stability of these
configurations is low. The most stable configurations are the ones in the middle
of the range.

Finally, note, that the three series have two shared configurations. Q21 may
belong also to Q3: this configuration can be located between Q33 and Q34. Q24
may belong to Q1 and located between Q12 and Q13.

When we take a look at all the series, one can also observe that in most cases
the pctb is sensitive to an error in the adjustment particularly for the largest
values of φ both for small and high values of w (particularly, the examples Q14,
Q21, and Q34). The most stable configurations, that is, resistant to lack of
appropriate adjustment of parameters can be found in the middle of the series
Q2, particularly Q24. It is worth noting here, that one of the popular choices of
particle parameters: c1 = c2 = 1.49445 and w = 0.72984 (in [14] authors showed
that the two values lead to satisfying results for a series of benchmark functions)
belongs to the area of such a stable configurations. On the other side, for the
smallest values of φ the initial location of a particle has no significant influence
and pctb depends on just the velocity: the smaller v the less pctb.

5 Swarms with Different Profiles of Particle Type
Membership – Experimental Research

In the experimental part of the research we verified a thesis that types of particles
defined in Subsect. 4.2 can be useful in construction of effective heterogenous
swarms. The PSO model with inertia weight (Eq. (2)) was implemented with
eleven particle type profiles of a swarm: swarms with particles which represent
just a single type A, or B, or C or D, swarms where a half of particles is of one
type and the remaining part — of another type: A and B, A and C, A and D, B



Particle Convergence Time in the Deterministic Model of PSO 189

and C, B and D, C and D, and the last profile where all the types A, B, C and
D are represented with equal number of particles.

The experimental part consists of two groups of experiments. For both groups
tested swarm sizes are: 4, 8, 12, 16, 20, 24, 28, and 56 particles. The outcome of
a single run of a swarm is the number of f itness function calls (f.f.c.) necessary
to find a solution located in a distance from the global optimum not greater than
0.1. A single configuration of an experiment is identified by a couple: the swarm
profile and the swarm size. For every configuration 1000 runs were executed and
respectively 1000 values obtained. It is assumed, that when a swarm is not able
to reach the requested quality of the result the run is finished after 100000 f.f.c.

5.1 The First Group of Experiments: Unimodal Optimization
Problem

In the first group the swarms are tested on a unimodal optimization problem repre-
sented by a one-dimensional Gaussian function: f(x) = 1/(

√
2πσ2) exp(− (x−μ)2

2σ2 )
where μ = 0, σ2 = 1, that is, optimum x∗ = 0. All the particles in a swarm
start from the same point x0 = −5 but are initialized with different velocities
v0 = U(−0.1, 0.1).

Distributions of the numbers of f.f.c. in the form of a five-number summary
(min, first quartile, median, third quartile and max) are depicted as box-and-
whisker plots in Figs. 10 and 11. Figure 10 shows statistics for seven profiles
where location and spread of observation are quite reasonable, that is, there

Fig. 10. Distributions of the numbers of f.f.c. for a series of 1000 runs of the swarms
which cope with the unimodal optimization problem.
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Fig. 11. Distributions of the numbers of f.f.c. for a series of 1000 runs of the swarms
which needed more time to reach the target.

Table 1. Unimodal problem: numbers of runs when swarm failed to reach the target
within series of 1000 runs.

Profile vs. size 4 8 12 16 20 24 28 56

A 64 0 0 0 0 0 0 0

B 0 0 0 0 0 0 0 0

C 547 451 356 261 196 155 133 6

D 1000 133 0 0 0 0 0 0

AB 0 0 0 0 0 0 0 0

AC 0 0 0 0 0 0 0 0

AD 495 2 0 0 0 0 0 0

BC 59 19 3 1 0 0 0 0

BD 0 0 0 0 0 0 0 0

CD 75 2 0 0 0 0 0 0

ABCD 0 0 0 0 0 0 0 0

exist a swarm profile for which the majority of runs needed less than a hundred
f.f.c. to reach the target. In this Figure due to effective behaviour of the swarms
and for better visibility of box-plots the range of tested swarm sizes is decreased,
thus the maximum size equals 20. Worse results for the full range of swarm sizes,
from 4 to 56, are presented in Fig. 11.

Numbers of runs when swarm failed to reach the target within the time of
100000 f.f.c. are presented in Table 1.

In this group of experiments the four configurations of swarms which returned
best results are: B, BD, CD, and ABCD. In Fig. 10 one can see that the least
median is obtained for CD-swarms, however, cost of a solution, that is, f.f.c. is
more stable for BD-swarms, particularly, for small-sizes of a swarm.

5.2 The Second Group of Experiments: Saddle Crossing Problem

In this group the swarms are tested on an one-dimensional function being a sum
of two Gaussian functions, the first one with μ = 0.038 and σ2 = 0.5 (the first
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Table 2. Saddle crossing problem: numbers of runs when swarm failed to reach the
target within series of 1000 runs

Profile vs. size 4 8 12 16 20 24 28 56

A 933 880 805 758 710 673 639 400

B 24 0 0 0 0 0 0 0

C 705 532 396 316 234 165 121 6

D 857 735 646 556 481 422 325 122

AB 0 0 0 0 0 0 0 0

AC 257 67 17 5 1 1 0 0

AD 901 824 732 667 558 554 474 242

BC 109 15 3 0 0 0 0 0

BD 9 0 0 0 0 0 0 0

CD 328 66 18 5 1 0 0 0

ABCD 5 0 0 0 0 0 0 0

local optimum which is also a global optimum x∗ = 0.038) and the second one
with μ = −2.51 σ2 = 1 (the second local optimum x∗ = −2.51). All the particles
in a swarm start from the same point x0 = −2.5, that is, from the second local
optimum, and are initialized with different velocities v0 = U(−0.5, 0.5).

In the case of saddle-crossing it is assumed that swarm is in the local opti-
mum trap and the main problem is to encourage particles to start searching
in the wider surrounding than usual. This was obtained by moderate increase
of velocity: in the previous case of a unimodal problem optimization the initial
velocity was set to v0 = U(−0.1, 0.1) whereas in the case of saddle-crossing –
v0 = U(−0.5, 0.5). In both cases limits for v0 are obtained with a trial-and-error
method. Numbers of runs when swarm failed to reach the target are presented
in Table 2. One can see that the most effective configurations are: B, AB, BD
and ABCD.

The last stage of the experimental research focuses on verification of useful-
ness of the varying character of particles for escaping from the local optimum
trap. Just like in an classic novella by R. L. Stevenson about Dr. Jekyll and
Mr. Hyde the particles of selected type change into representatives of another
type for a number of iterations, make few moves according to their alternate
nature and eventually transform back to their real type. Selection of possible
particle types useful for transformations was based on our previous experiences.

The main scheme of JH-strategy for the particle type transformation (named
after the main character of Stevenson novella) is as follows: all particles in a
swarm turn their types of behaviour into new one for five iterations of the algo-
rithm. The time of five iterations should be devoted exploration necessary to
escape from the local optimum trap. Then, the particles transform back and
continue their regular “life” following newly discovered attractors and loca-
tions. Again, using a trial-and-error method we selected the type C for the
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Table 3. Saddle crossing problem: numbers of runs when JH -swarm failed to reach
the target within series of 1000 runs (for the case of swarm consisting of particles of
the C type the strategy of switching into the C type has had to be modified).

Profile vs. size 4 8 12 16 20 24 28 56

A 5 0 0 0 0 0 0 0

B 78 16 5 1 1 0 0 0

C∗ 717 518 381 289 214 170 116 10

D 77 7 0 0 0 0 0 0

AB 0 0 0 0 0 0 0 0

AC 24 1 0 0 0 0 0 0

AD 13 0 0 0 0 0 0 0

BC 196 77 19 12 4 1 1 0

BD 26 0 0 0 0 0 0 0

CD 145 4 1 0 0 0 0 0

ABCD 4 0 0 0 0 0 0 0

“alternative personality” as the most promising one. Numbers of runs when
swarm failed to reach the target are presented in Table 3. The symbol of a star
at the letter C in the first column denotes, that for the case of swarm con-
sisting of C-particles the strategy of switching has had to be modified: for the
time of the first five iterations instead of turning the particles into the C type
(which would be pointless), the particles are turned into the B type. Even brief
comparison of Tables 2 and 3 shows that application of the JH -transformation
significantly improves effectiveness of the swarm (obviously, except from the case
of the swarm with C type particles).

For the set of the effective swarm configurations: B, AB, BD and ABCD
distributions of the numbers of f.f.c. are depicted in Figs. 12 and 13. Figure 12
presents distributions of the numbers of f.f.c. for selected regular swarms for
which in Table 2 one can find also numbers of fails in reaching the target. Respec-
tively, numbers of fails in reaching the target for the JH -swarms depicted in
Fig. 13 can be found in Table 3.

In the group of tests with regular swarms the computational cost represented
as a median of the numbers of f.f.c. for the series of 1000 experiments is least for
ABCD-swarms. When the JH-strategy is applied, the cost obtained for all stud-
ied JH-swarm configurations decreased and is less than the best cost obtained
for ABCD regular swarms. For JH-swarms the values of median are similar for
all the cases presented in Fig. 13, however, the best stability measured as a dif-
ference between maximum and minimum number of f.f.c. can be observed for
BD-swarms.
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Fig. 12. Distributions of the numbers of f.f.c. for a series of 1000 runs of the regular
swarms.

Fig. 13. Distributions of the numbers of f.f.c. for a series of 1000 runs of the JH -swarms.

6 Summary

A new measure of particle convergence time (pct) is proposed and studied in
this research. For the deterministic model of PSO with inertia weight an upper
bound formula of (pct) is derived. These tools are applied to identify four types
of particle behaviour depending on parameters φ and w. Additionally, two para-
meters: an angle coefficient for the major axis (ama) and an eccentricity (ε) are
proposed for effective classification of particle behaviour.

In the experimental part it is shown that the proposed classification of par-
ticle types can be useful in construction of effective heterogenous swarms. Two
test-beds are used: a simple unimodal problem and a saddle crossing problem.
A new strategy of run-time particle type control, the JH-strategy is proposed.
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Abstract. Modeling and forecasting human mortality are significant research
topics in several disciplines because mortality rates are fundamental in planning
and policy decisions. Among various techniques, Lee Carter (LC) model is one
of the most popular stochastic method in human mortality modeling. The
original LC model was fuzzified to eliminate the assumptions related with
homoscedasticity. The existing fuzzy model makes use of ordinary least squares
(OLS) technique, which prevents the model to capture the existing fluctuations
in data. In this study, a revised version of fuzzy LC model utilizing singular
value decomposition (SVD) technique is proposed to overcome this issue. After
modeling the mortality rates, their future values are forecasted by a modified
first order fuzzy time series technique. For illustration purposes, proposed
method is applied to mortality data of Finland. Numerical outputs show that
proposed method is statistically better in modeling mortality compared to the
existing fuzzy method. In addition, the modified fuzzy time series technique
generates better forecasts than the original version.

Keywords: Fuzzy modeling � Lee Carter method � Singular value
decomposition � Fuzzy regression � Fuzzy time series � Human mortality
modeling

1 Introduction

It is known that human mortality modeling and forecasting play significant roles in
strategy development and decision making in diverse sectors. Mortality modeling finds
application areas in projecting and forecasting life expectancies, age distributions,
unemployment rates, labor force compositions, household consumptions and etc.
Together with fertility and migration rates, mortality rates constitute the vital demo-
graphic indicators of population dynamics [1]. Age-specific population estimates of
immediate future or long-term forecasts based on these vital demographic indicators
shape the policies in allocating the resources among public and private investments and
the future population [2]. The outputs of the models obtained from fertility, mortality
and migration elements form the basis for medium or long term planning in various
areas such as labor market [3], public financing [4], insurance and pensions sector
[5, 6], education system [2], healthcare services [7], and etc.
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Population modeling and estimations are performed via diverse methodologies
which can basically be grouped as population projection methods and population
forecasting methods. The projection methods simply rely on deterministic scenarios for
different components of mortality, fertility and migration value combinations [8].
Setting the values of these components generally requires formation of a group of
experts. In contrast, population forecasting makes use of historical data to obtain a
future population estimate using a stochastic approach which takes component
uncertainties into account. In fact, stochastic modeling methods have a significant area
in demographic forecasting since they provide estimations for the vital demographic
indicators together with forecast intervals for them [8]. Time series methods are major
extrapolative stochastic methods used for mortality forecasting based only on historic
data [9–12]. Thus, these methods do not involve any exogenous factor such as a
disaster or a technological development.

In mortality modeling, Lee-Carter (LC) model is one the most extensively studied
stochastic method. This popular method basically computes time varying mortality
indices for each age and sex cohort through a matrix decomposition technique.
According to Lee and Carter [9], mortality can be modeled as:

lnðmx;tÞ ¼ ax þ bxkt þ ex;t ð1Þ

where mx,t is the central death rate for age x at time t, ax and bx are age-specific
constants and kt is time-variant mortality index. Here, the error term ex,t, which rep-
resents the random effects that are not reflected by the model, is assumed to be nor-
mally distributed with mean 0 and a small constant variance r2e .

The model in Eq. (1) cannot be fitted by using ordinary least squares (OLS) method
since the time-variant mortality indices, kt’s (independent variables in Eq. (1)) are
unknown. Hence, Lee and Carter use singular value decomposition method (SVD) to
give estimates for the unknown parameters ax, bx and kt of Eq. (1).

In literature, many improvements to the LC model have been suggested. For
example, a double bilinear predictor structure can be embedded in the original model to
include the effects of age differences [13], whereas a Poisson regression model can be
constructed to fit mortality rates at each age group [14]. Moreover, the problems related
with outliers in historic data are handled by several parametric and nonparametric
smoothing techniques [2, 12, 15–17]. Further developments in LC model can be found
in [5, 18].

1.1 Fuzzy LC Model

The reason why LC model is a commonly method is due to its simplicity and ability to
represent the decreasing tendencies in mortality rates for most of the developed
countries [19]. However, existence of random fluctuations due to external factors
causes the original LC model to lose its capability of reflecting the mortality rates [20].
Additionally, for cases with small sample sizes, the assumptions related with error
terms cannot be satisfied. Original LC model make use of SVD technique in which
error terms are assumed to be normally distributed with a small constant variance, r2e .
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This strict homoscedasticity assumption prevents the model to be applied to the cases
where precise and enough number of past data are not available. It is also supposed that
the magnitude of this variance has to be small but there is an obvious ambiguity in how
small it should be [21]. Considering these shortcomings, Koissi and Shapiro refor-
mulated the original LC model by incorporating fuzziness into it [22]. The fuzzy LC
method is based on minimum fuzziness criterion, which is designed as a part of fuzzy
least squares regression approach [23].

Koissi and Shapiro’s fuzzy LC model is formulated as:

~Yx;t ¼ ~Ax �
TW

~Bx �
TW

~Kt for x ¼ x1; . . .xN ; t ¼ t1; t1 þ 1; . . .; t1 þ T � 1 ð2Þ

Here, ~Yx;t is the fuzzy ln-mortality rate of age cohort x at time t whose values are
known beforehand, ~Ax and ~Bx are the unknown fuzzy age-specific parameters, and ~Kt

is the unknown fuzzy time-variant mortality index. ~Ax, ~Bx, and ~Kt are expressed with
fuzzy symmetric triangular numbers as ~Ax ¼ ðax; axÞ; ~Bx ¼ ðbx; bxÞ; and ~Kt ¼ ðkt; dtÞ,
where ax; bx; and kt denote the centers and ax; bx; and dt reflect the spreads of the
corresponding fuzzy numbers. With Eq. (2), Koissi and Shapiro consider the ln-mor-
tality rate for age cohort x at time t as a confidence interval by fuzzifying it instead of
treating it as a crisp number. Expressing ln-mortality rates with fuzzy numbers may be
reasonable as exact values of mortality rates are seldom known because of miscalcu-
lations or errors in data collection and recording.

1.2 Motivation for a New Fuzzy LC Method

Fuzzy formulation of LC model in Eq. (2) requires the fuzzification of observed crisp
Yx,t values. To meet this requirement, Koissi and Shapiro employ fuzzy least squares
regression based on minimum fuzziness criterion [23, 24]. That is, the task is to find
~A0 ¼ ðc0x; s0xÞ, ~A1 ¼ ðc1x; s1xÞ, and ~Yx;t ¼ ðyx;t; ex;tÞ with centers c0x; c1x; and yx;t; and
spreads s0x; s1x; and ex; t; so that:

ðyx;t; ex;tÞ ¼ ðc0x; s0xÞþ ðc1x; s1xÞ � t ð3Þ

for each age cohort x. Here, first, ordinary least squares regression (OLS) is applied to
obtain center values such that

Yx;t ¼ c0x þ c1x � t ð4Þ

Then, the spreads are determined by solving linear programming (LP) models for
each age cohort x based on minimum fuzziness criterion.

In Eq. (4) time t is considered as the explanatory variable. However, t, the inde-
pendent variable in Eq. (3), is monotonically increasing, hence, the centers and spreads
of ln-mortality rates take linear form, which is not able to capture the existing fluc-
tuations. In this study, to overcome this issue, a modification in fuzzification of crisp
Yx,t values based on singular value decomposition (SVD) technique is proposed.
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With the proposed modification, the fluctuations in ln-mortality rates can be captured
by the model. The proposed fuzzy LC model also eliminates the homoscedasticity
assumptions and assumptions related to the magnitude of error term variances.
Moreover, like Koissi and Shapiro’s method, the proposed model can be used in cases
where there are concerns about the ambiguity related to data and when the number of
data is not sufficient to use the original LC or other stochastic methods.

The proposed method also forecasts the future mortality rates via a modified first
order fuzzy time series method. The forecasting operation uses the estimated
time-variant fuzzy mortality indices ~Kt’s. ~Kt’s are the input data to forecast ln-mortality
rates for t ¼ t1 þ T ; t1 þ T þ 1; . . . The modified fuzzy time series approach is based on
Song and Chissom’s method [25].

The rest of the paper is designed as follows: Sect. 2 is dedicated to the proposed
methodology while the numerical findings obtained from the application of the pro-
posed method to Finland mortality data are given in Sect. 3. The study is concluded
with Sect. 4.

2 Methodology

The proposed fuzzy LC method first deals with modeling human mortality, in which
the fuzzy parameters in Eq. (2) are estimated. Next, a first order fuzzy time series
approach is utilized to forecast future mortality indices, hence, future mortality rates.

2.1 Modeling Human Mortality

Mortality modeling part of the proposed method can be examined in two phases.
Phase I deals with fuzzification of observed Yx,t values, where Yx,t denotes the natural
logarithm of mortality rate for age cohort x at time t, for x ¼ x1; . . .xN ; and t ¼
t1; t1 þ 1; . . .; t1 þ T � 1: Phase II is devoted to finding the model parameters for
estimating the mortality rates. The proposed modifications are mainly in Phase I.

Phase I: Fuzzification of Observed Rates. This phase deals with the fuzzification of
observed Yx,t (ln-mortality), values. That is, given the natural logarithms of mortality
rates Yx,t’s, the aim is to find ~A0 ¼ ðc0x; s0xÞ; ~A1 ¼ ðc1x; s1xÞ; and ~Yx;t ¼ ðyx;t; ex;tÞ
with centers c0x; c1x; and yx;t; and spreads s0x; s1x; and ex;t; such that:

ðyx;t; ex;tÞ ¼ ðc0x; s0xÞþ ðc1x; s1xÞ � ft ð5Þ

for each age cohort x, where ft can be viewed an unknown time-variant fuzzification
index. ft can be expressed as ft ¼ gtð~mxtÞ, where gt is a time dependent function which
maps ~mxt to fuzzification index ft for each time t, and ~mxt is a vector composed of
mortality rates mx1t;mx2t; . . .;mxNt for each time t and age cohort xi ¼ x1; . . .xN : Indeed,
Eq. (5) employs ft as the explanatory variable whose value is unknown. This fuzzifi-
cation index is assumed to be capable of capturing the fluctuations in ln-mortality rates.
The fuzzification index is different from the independent variable, t, in Eq. (3). This is

200 D.F. Demirel and M. Basak



because t is a monotonically increasing variable, hence the centers and spreads of ln-
mortality rates obtained through Koissi and Shapiro’s method result in linear pattern. In
contrast, the fuzzification index ft, which consists of the aggregated age cohort mor-
tality rates, does not necessarily show a linear trend. As a result, a better fitting model
can be generated via Eq. (5).

With this modification in mind, in Phase I of the proposed method, first the center
values, then the spreads in Eq. (5) are found, so the observed crisp ln-mortality rates
are transformed into fuzzy numbers. The details of these operations are given in the
following two sub-sections.

Finding Center Values. The necessary regression equation for finding the center values
in fuzzification of observed ln-mortality rates can be extracted from Eq. (5) as:

yx;t ¼ c0x þ c1x � ft ð6Þ

In fact, Eq. (6) is a modified version of Eq. (4), in which the independent variable is
replaced with the fuzzification index ft. Since ft values are not readily known, rather
than using OLS method, SVD technique is utilized to compute the unknown fuzzifi-
cation indices. SVD transforms the space in which a set of data is defined into a lower
dimensional space by putting emphasis on the underlying principle of the original data
[26]. Mathematically, the method decomposes an m� n rectangular matrix A into
product of three matrices as:

A ¼ FEHT ð7Þ

where F is an m� m orthogonal matrix whose columns are orthonormal eigenvectors
of AAT ; H is an n� n orthogonal matrix whose columns are orthonormal eigenvectors
of ATA; and E is an m� n diagonal matrix composed of the square roots of eigenvalues
from F or H in descending order. Since the diagonal matrix E is comprised of
eigenvalues from its left and right eigenvectors, it is possible to reflect the main
characteristics of matrix A by SVD technique.

SVD method aims to reorient the dimensional space in which matrix A is defined so
that the new coordinate axes are adjusted to follow a similar pattern with the data points
of matrix A. That is, the orthogonal vectors formed by the columns of matrices F or
H are appointed to be the new coordinate axes for the vector space of original matrix
A. Figure 1 illustrates the geometric interpretation of the method as an example. Here,
the coordinate plane x1−x2 that a hypothetic matrix A with six data points (data points
are shown as “x”) is defined in can be reoriented into coordinate plane v1−v2 with the
help of SVD method.

Hence, the nature of SVD technique allows Eq. (6) to capture the fluctuations in ln-
mortality rates. Implementing SVD method in Eq. (6) to estimate the unknown
parameters c0x; c1x; and ft requires the following routine [9]:
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Finding the Spreads. At this point, using the estimated parameters c0x; c1x; and ft, the
spread optimization part of Koissi and Shapiro’s model is rewritten as:

minimize Ts0x þ s1x
Xt0 þ T�1

t¼t0

jftj ð8Þ

subject to:

c0xþ c1xft þð1� hÞ½s0x þ s1xjftj� � yx;t; for 8t ¼ t0; t0 þ 1; . . .; t0 þ T � 1 ð9Þ

c0x þ c1xft � ð1� hÞ½s0x þ s1xjftj� 	 yx;t; for 8t ¼ t0; t0 þ 1; . . .; t0 þ T � 1 ð10Þ

s0x; s1x � 0 ð11Þ

Here, the objective is to minimize the total spread. Equations (9) and (10) guarantee
that each ln-mortality rate Yx;t falls within the fuzzified ~Yx;t at a level h, which is a
predetermined small nonnegative parameter. h can be viewed as the a-cuts in fuzzy set

Fig. 1. Geometric interpretation of SVD method for a matrix A.
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theory. Thus, in the context of fuzzy least squares regression, h is defined to be 0 to
prohibit large spreads [22].

Phase II: Estimation of Demographic Rates. Once Phase I is completed and the
observed ln-mortality rates are fuzzified, the next step is to estimate the mortality rates
by finding the unknown fuzzy parameters ~Ax; ~Bx and ~Kt in Eq. (2), where ~Ax ¼
ðax; axÞ; ~Bx ¼ ðbx; bxÞ; and ~Kt ¼ ðkt; dtÞ. Actually, the corresponding model in phase
II of the proposed methodology is the same as the fuzzy model parameter estimation
step of Koissi and Shapiro’s method except the solution procedure.

Before presenting Phase II model, it might be practical to state that the charac-
teristics of the fuzzy numbers are not preserved with multiplication of triangular fuzzy
numbers. To retain the shape of LR-type fuzzy numbers, weakest triangular norm (TW)
based multiplication and addition can be used [27]. For two symmetric triangular fuzzy
numbers ~A ¼ ða; lAÞ and ~B ¼ ðb; lBÞ; the shape preserving TW -based multiplication
and addition are defined as [22]:

~A �
TW

~B ¼ ðaþ b; maxðlA; lBÞÞ ð12Þ

~A�
TW

~B ¼ ðab; maxðlAjbj; lBjajÞÞ ð13Þ

Considering Eqs. (12) and (13), Eq. (2) becomes:

~Yx;t ¼ ðax þ bxkt; max ðax; jbxjdx; bxjktjÞÞ ð14Þ

The unknown parameters ax; bx; kt; ax; bx; and dt are estimated by minimizing the
total squared distance between ~Ax �

TW

~Bx �
TW

~Kt and ~Yx;t: Koissi and Shapiro, employ

Diamond distance as the fuzzy distance metric in minimization model. Diamond dis-
tance between two symmetric triangular fuzzy numbers ~A1 ¼ ða1; a1Þ and ~A2 ¼
ða2; a2Þ is defined as [28]:

DLRð~A1; ~A2Þ ¼ ða1 � a2Þ2 þ ½ða1 � a1Þ � ða2 � a2Þ�2 þ ½ða1 þ a1Þ � ða2 þ a2Þ�2
ð15Þ

Minimizing total Diamond distance results in an unconstrained nonlinear opti-
mization problem which is formulated for all age cohorts x and time t as:

Minimize
X
x

X
t

DLR½~Ax �
TW
ð~Bx �

TW

~KtÞ; ~Yx;t�2 ð16Þ
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where

DLR½~Ax �
TW
ð~Bx �

TW

~KtÞ; ~Yx;t�2 ¼ ðax þ bxkt � yx;tÞ2 þ ½ax þ bxkt � maxfax; jbxjdt; bxjktjg

� ðyx;t � ex;tÞ�2 þ ½ax þ bxkt þmaxfax; jbxjdt; bxjktjg � ðyx;t þ ex;tÞ�2
ð17Þ

Applying SVD, ax can be easily computed as:

ax ¼ 1
T

X
t

yx;t ð18Þ

Estimating parameters bx; kt; ax; bx; and dt is less forthright, because, the mathe-
matical structure of Eq. (16) does not permit using a derivative based solution
approach. At this point, fminsearch tool of MATLAB optimization application for
unconstrained optimization problems can be used to obtain estimates for the unknown
parameters. Indeed, fminsearch is a derivative free method for unconstrained nonlinear
optimization problems based on Nelder-Mead simplex algorithm (see [29] for details of
Nelder and Mead algorithm). Finally, with the computed parameters, fuzzy ln-mortality
rates can be estimated for x ¼ x1; . . .; xN ; and t ¼ t1; t1 þ 1; . . .; t1 þ T � 1 by using
Eq. (2).

2.2 Forecasting Future Mortality Rates

In this part of the study, future mortality rates are forecasted by fuzzy time-variant
mortality indices ~Kt’s for t ¼ t1 þ T ; t1 þ T þ 1; . . . based on the model outputs gen-
erated in Sect. 2.1. To forecast future mortality indices, a modified first order fuzzy
time series (FFTS) technique is proposed. The proposed FFTS technique is based on
the conventional fuzzy time series method of Song and Chissom [25]. Since fuzzy time
series approaches divide the observed data into intervals, Song and Chissom identify a
fuzzy set as the union of the membership degrees of the intervals to that set. However,
in our approach, normalized membership degrees are aggregated to identify a fuzzy set.
Based on proposed modified FFTS method, future mortality rates are computed with
the forecasted future mortality indices using Eq. (2).

First Order Fuzzy Time Series (FFTS): Conventional Approaches. In general, let
U ¼ u1; u2; . . .; unf g be the universe of discourse. Here, uk’s, k = 1,…, n, are the
intervals whose union covers the whole dataset. A fuzzy set Ai in U is defined as:

Ai ¼ fAiðu1Þ
u1

þ fAiðu2Þ
u2

þ . . .þ fAiðunÞ
un

ð19Þ

where fAi is the membership function of the fuzzy set Ai which maps U to the interval
[0,1], fAiðukÞ : uk ! ½0; 1� stands for the membership degree of uk in the fuzzy set Ai;
1	 k	 n [30].
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Consider a time variant universe of discourse Y(t) (t = …, 0, 1, 2,…), which is
composed of intervals representing fuzzy sets fiðtÞ; t = …, 0, 1, 2,… Moreover, if F(t)
denotes a collection of fiðtÞ then F(t) is defined as a fuzzy time series on Y(t). Also,
assume that there is a fuzzy relationship R(t−1, t) such that

FðtÞ ¼ Fðt � 1Þ 
 Rðt � 1; tÞ ð20Þ

where “
” represents a composition operator. Equation (20) indicates that F(t) is
caused by F(t−1) and this causality is represented by a fuzzy logical relationship. If
Fðt � 1Þ ¼ Ai and FðtÞ ¼ Aj; then the fuzzy logical relationship between F(t−1) and
F(t) is expressed as:

Ai ! Aj ð21Þ

Equation (21) states that the fuzzy relationship R is a first order model of F(t). If
there exists some fuzzy logical relationships such that Ai ! Aj1 ; Ai ! Aj2 ; …, Ai !
Ajl ; then, these Ajk ’s are clustered into a fuzzy logical relationship group
Ai ! Aj1 ;Aj2 ; . . .Ajk :

Proposed FFTS Method for Forecasting Mortality Rates. The existing fuzzy time
series methods include fuzzification of crisp observed data. This is done by utilizing
fuzzy subsets that correspond to a linguistic expression such that a fuzzy set Ai is
defined as in Eq. (19). The conventional fuzzy time series methods express a fuzzy set
Ai by the interval u�k with the maximum membership (that is, fAiðu�kÞ is the largest
fAiðukÞ) [25].

In this study, fuzzy estimates for mortality indices are generated using the approach
discussed in Sect. 2.1. Thus, a modified FFTS method for forecasting mortality indices
that uses fuzzy inputs representing crisp data is proposed. The method is composed of
seven steps:

Step 1: A universe of discourse U is defined to cover fuzzy mortality indices ~Kt’s to
include minðkt � dtÞ and maxðkt � dtÞ for all t ¼ t1; t1 þ 1; . . .; t1 þ T � 1. Then
U is partitioned into intervals uk’s, k = 1,…, n. The number of intervals depends on
the lengths of the intervals; and the lengths of the intervals are identified according
to average based [31], distribution based [31] or ratio based [32] interval length
construction approaches.
Step 2: For each interval uk, midpoint pk is computed.
Step 3: For each estimated fuzzy mortality index ~Kt, the membership of interval uk
to ~Kt is calculated by:

lk;t ¼
0; if pk\kt � dt
pk�ðkt�dtÞ

dt
; if kt � dt\pk\kt

ðkt þ dtÞ�pk
dt

; if kt\pk\kt þ dt
0; if pk [ kt � dt

8>><
>>:

ð22Þ
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Then, for each t, lk;t’s are normalized to sum up to 1. The normalized lk;t is denoted
by normðlk;tÞ:
Step 4: For each ~Kt, a fuzzy set Ai in U is defined. The index i is determined by the
interval ui into which center kt takes place. Ai is expressed as:

Ai ¼
l1;t
u1

þ l2;t
u2

þ . . .þ ln;t
un

ð23Þ

Step 5: Fuzzy relationship Ai ! Aj is identified for each consecutive time periods t
−1 and t. One-to-one and one-to-many fuzzy relationships are established as
mentioned previously.
Step 6: Forecasted center k̂t of fuzzy mortality index ~Kt is derived from ~Kt�1 with
the fuzzy relationships identified in step 5. Let ci be the indicator representing fuzzy
set Ai corresponding to a fuzzy mortality index ~Kt: ci is computed by:

ci ¼
Xn
k¼1

ðnormðlk;tÞ � pkÞ ð24Þ

If there exist different fuzzy sets having the same index i, an average indicator ci is
assigned. After computing the indicators, k̂t is calculated based on the following
principles:

(i) If there exists a one-to-one relationship Ai ! Aj between ~Kt�1 and ~Kt; then
k̂t ¼ cj

(ii) If Aj ¼ ;, that is Ai ! ;, then k̂t ¼ ci
(iii) If the relationship between ~Kt�1 and ~Kt is a one to many relationship such as

Ai ! Aj1 ;Aj2 ; . . .;Ajn , then k̂t ¼
Pn

v¼1 cjv=n.

Following this procedure, k̂tþ 1 is forecasted using fuzzy relationships established
for ~Kt. Thus, ln-mortality rate Yx,t+1 for age cohort x can be computed with

Ŷx;tþ 1 ¼ ax þ bxk̂tþ 1 ð25Þ

Hence the six consecutive steps of the proposed method are used in forecasting
future ln-mortality rates.

3 Application

The proposed method is applied to mortality data for Finland. Koissi and Shapiro also
apply their method on Finland mortality dataset; therefore the reason in selecting
Finland as the country for application in this study is that the proposed method can be
compared with the existing fuzzy approach. Furthermore, the proposed method claims
to capture the fluctuations in data; and the demographic rates in Finland show some
fluctuations as a result of some external factors like World War II. In addition to
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mortality modeling, future mortality rates for Finland are forecasted using the modified
FFTS approach described in Sect. 2.2. The numerical findings obtained for mortality
modeling and forecasting are given in two sub-sections as follows.

3.1 Mortality Modeling Findings

The mortality data for Finland are taken from “Human Mortality Database” (www.
mortality.org). Data is composed of mortality rates (for both genders) of seventeen
consecutive five-year-periods 1925–1929, 1930–1934 …, 2005–2009, and twenty two
age cohorts of [0, 1), [1–5), [5, 10), …, [100, 105) (making 374 data points in total).

The outcomes for fuzzification of observed ln-mortality rates (ln-Mx,t) which is
expressed as Phase I of the proposed method, are depicted in Figs. 2 and 3. Randomly
selected age cohorts are [25, 30) and [45–50) respectively in Figs. 2 and 3.

In both figures, the horizontal axis stand for time periods (1 = 1925–1929, …,
17 = 2005–2009), whereas the vertical axis depicts the ln-mortality rates. In these
figures, observed ln-Mx,t (observed); the center of the fuzzified ln-mortality rate (fuzzy
center-OLS) together with its corresponding right tail (UB-OLS) and left tail (LB-OLS)
obtained via Koissi and Shapiro’s method; and the center of the fuzzified ln-mortality
rate (fuzzy center-SVD) together with its corresponding right tail (UB-SVD) and left
tail (LB-SVD) obtained by the proposed method are provided. Both figures show that
the fuzzification of ln-Mx,t results in better fits with smaller spread ranges via the
proposed method.

To compare the magnitude of spreads generated during fuzzification phase via two
methods, two example time periods are given in Tables 1 and 2. These tables illustrate
the spreads of fuzzified ln-Mx,t values for the first (1925–1929), and the last

Fig. 2. Observed ln-Mx,t, fuzzy ln-Mx,t with its spreads by Koissi and Shapiro’s method, and
fuzzy ln-Mx,t with its spreads by the proposed method for age group [25, 30).
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(2005–2009) time periods that are included in the application respectively. In each
table, spreads generated via Koissi and Shapiro’s fuzzified LC model (spreadOLS) and
the proposed fuzzy LC model (spreadSVD) are shown for each age cohort.

Tables 1 and 2 show that the number of smaller spreads generated during fuzzi-
fication of ln-Mx,t by the proposed method are increasing by time. This trend can be
explained by the advances in accurate data approaches which result in vagueness
reduction, thus smaller spreads. In fact the proposed method generates larger spreads
mostly for the youngest and eldest age cohorts due to extreme (low or high) demo-
graphic rates and during time periods in which data collection and recording systems
should be treated with caution such as the starting periods or World War II years. This
tendency can be seen in Fig. 4, in which number of cases that proposed method

Fig. 3. Observed ln-Mx,t, fuzzy ln-Mx,t with its spreads by Koissi and Shapiro’s method, and
fuzzy ln-Mx,t with its spreads by the proposed method for age group [45, 50).

Table 1. Spreads of fuzzified ln-mortality values for Finland, 1925–1929.

Age group SpreadOLS SpreadSVD Age group SpreadOLS SpreadSVD
[0, 1) 0.3220 0.4419 [50, 55) 0.0750 0.1560
[1, 5) 0.4920 0.3556 [55, 60) 0.1250 0.1533
[5, 10) 0.5300 0.1723 [60, 65) 0.1540 0.1837
[10, 15) 0.4890 0.2333 [65, 70) 0.1860 0.2686
[15, 20) 0.9170 0.4520 [70, 75) 0.1920 0.3123
[20, 25) 1.6470 0.9371 [75, 80) 0.2137 0.2960
[25, 30) 1.3170 0.6741 [80, 85) 0.1970 0.2603
[30, 35) 1.0320 0.4829 [85, 90) 0.2110 0.2300
[35, 40) 0.7380 0.3062 [90, 95) 0.2340 0.2473
[40, 45) 0.3860 0.1300 [95,100) 0.2340 0.2556
[45, 50) 0.1380 0.1173 [100,105) 0.3750 0.4252
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generates smaller spreads compared to Koissi and Shapiro’s method during fuzzifi-
cation of ln-Mx,t values. It can be seen from Fig. 4 that proposed method generates
smaller spreads for most of the age cohorts for the last time periods (e.g. in 20 cases out
of 22 for 2005–2009 period) in which dealing with complex data approaches becomes
easier due to technological advancements.

When the whole dataset is taken into account, paired t-test results show that the
proposed method is statistically superior to Koissi and Shapiro’s method in terms of
smaller spread generation (t-value = 13.53, p-value = 0.000), and smaller absolute
distances between observed ln-Mx,t and center values of fuzzified ln-Mx,t (t-value =
5.07, p-value = 0.000) during the fuzzification of ln-mortality rates.

Table 2. Spreads of fuzzified ln-mortality values for Finland, 2005-2009.

Age group SpreadOLS SpreadSVD Age group SpreadOLS SpreadSVD
[0, 1) 0.4180 0.2102 (50, 55) 0.0750 0.0401
[1, 5) 0.4926 0.0852 (55, 60) 0.1250 0.1468
[5, 10) 0.5300 0.0951 (60, 65) 0.1540 0.1450
[10, 15) 0.4890 0.1561 (65, 70) 0.1860 0.1141
[15, 20) 0.9170 0.4520 (70, 75) 0.2240 0.1192
[20, 25) 1.6470 0.0487 (75, 80) 0.2251 0.1801
[25, 30) 1.3170 0.0175 (80, 85) 0.1970 0.1831
[30, 35) 1.0320 0.0194 [85, 90) 0.2110 0.2300
[35, 40) 0.7380 0.0028 [90, 95) 0.2340 0.0542
[40, 45) 0.3860 0.1300 [95,100) 0.2340 0.1011
[45, 50) 0.1380 0.0401 [100,105) 0.3750 0.0003

Fig. 4. Number of smaller spreads generated by proposed method during Phase I.
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To display the outputs obtained during Phase II, once again the results for two age
cohorts, [25–30) and [45–50), are selected as examples. Figures 5 and 6 illustrate the
observed ln-Mx,t, and centers of estimated fuzzy ln-Mx,t with Koissi and Shapiro’s and
proposed methods for age groups [25, 30) and [45–50) respectively. In both figures, the
horizontal axis stand for time periods (1 = 1925–1929, …, 17 = 2005–2009), whereas
the vertical axis depicts the ln-mortality rates. The numerical findings show that the
proposed method displays better similarity between observed and estimated ln-mortality
rates compared to Koissi and Shapiro’s method. In fact, paired t-test results show that the
proposed method is better in generating smaller spreads (t-value = 13.97, p-value =
0.000) and smaller absolute distances between observed ln-Mx,t and centers of fuzzy
estimations (t-value = 2.69, p-value = 0.004) during estimation of ln-mortality rates.

Fig. 5. Comparison of outputs for Phase II in estimating ln-Mx,t for age cohort (25–30).

Fig. 6. Comparison of outputs for Phase II in estimating ln-Mx,t for age cohort (45–50).
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The t-test results can be supported with the amount of errors between observed ln-
Mx,t and centers of estimated fuzzy ones for the two methods. Mean absolute per-
centage error (MAPE) is 4.85 % for Koissi and Shapiro’s method, while it is found to
be 3.13 % for the proposed method. The reason why the proposed method gives better
fits is mainly due to the utilization of SVD in fuzzification of observed ln-Mx,t’s. The
usage of OLS in Koissi and Shapiro’s method results in centers with linear trends,
hence, the fluctuations in data cannot be covered properly.

3.2 Mortality Forecasting Results

In Sect. 3.1, mortality rates up to 2005–2009 period (period 17) have been estimated.
Now, the task is to forecast mortality rates for the next period 2010–2014 (period 18)
using the estimated mortality indices kt’s (t = 1,…,17) generated. The proposed
modified FFTS method given in Sect. 2.2 is applied on kt’s (t = 1,…,17) to forecast
k18.

The fuzzy interval lengths are determined by three different approaches: ratio based
interval, distribution based interval, and average based interval. In literature, these
approaches are reported as the most efficient interval length determination methods [31,
32]. Among them, ratio based interval length setting approach is ranked as the best.
Also, the conventional fuzzy time series technique is applied to the same kt values with
the above mentioned interval length determination approaches for comparison pur-
poses, and the results are shown in Tables 3 and 4.

Table 3. Comparison of FFTS methods with 15 data points.

Method No of intervals MAPE (%)
kt

MAPE(%)
Yx,16

Ratio based interval (Con. FTS) 22 6.9269 2.6246
Distribution based interval (Con. FTS) 14 21.6465 2.5964
Average based interval (Con. FTS) 28 7.9715 2.6793
Ratio based interval (Mod. FFTS) 34 8.9307 2.6209
Distribution based interval (Mod. FFTS) 21 9.8947 2.6943
Average based interval (Mod. FFTS) 41 1.6794 2.5742

Table 4. Comparison of FFTS methods with 17 data points.

Method No of intervals MAPE (%)

Ratio based interval (Con. FTS) 22 6.2979
Distribution based interval (Con. FTS) 14 14.8642
Average based interval (Con. FTS) 29 8.8718
Ratio based interval (Mod. FFTS) 34 8.7717
Distribution based interval (Mod. FFTS) 21 10.8586
Average based interval (Mod. FFTS) 41 3.2377
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Tables 3 and 4 display MAPE between kt obtained in modeling part and the
estimated k̂t via a time series method using 15 data points (t = 1,…,15) and 17 data
points (t = 1,…17) respectively. In these tables, number of fuzzy intervals generated
via conventional fuzzy time series method (Con. FTS) and the modified FFTS method
(Mod. FFTS) with the three different interval length determination approaches are
given in second columns. Both tables show that the modified FFTS method with
averaged based interval lengths gives better fits in estimating mortality indices with
both sample sizes (Their corresponding MAPEs are 1.6794 % and 3.2377 %). The
additional column (MAPE(%) Yx, 16) in Table 3 displays MAPE in forecasting ln-
mortality rates for 1995–1999 time period (t = 16) when 15 data points (kt obtained
from Sect. 3.1, t = 1,…,15) are considered. The values in this column show that,
modified FFTS method with average based interval lengths slightly outperforms the
other methods.

As it is stated in literature, ratio based interval length determination approach out-
performs the other techniques for the conventional fuzzy time series method. However,
this approach is not the best one when the modified FFTS method is applied. This is
because modified FFTS method employs the spreads of ~Kt together with its center value,
whereas the conventional fuzzy time series considers only the center values.

The mortality indices k̂t’s estimated via the six fuzzy time series methods using 17
data points are given in Table 5. kt values obtained in Sect. 3.1 are given second

Table 5. kt values estimated via fuzzy time series methods for 17 data points.

t Modeled
kt

Con.FTS Mod.FFTS
Ratio
based
interval

Distribution
based
interval

Average
based
interval

Ratio
based
interval

Distribution
based
interval

Average
based
interval

1 1.680672
2 1.571868 1.523127 1.4 1.55 1.43926 1.402006 1.571172
3 1.470318 1.627699 1.6 1.45 1.43926 1.623022 1.470716
4 1.770998 1.627699 1.6 1.75 0.874861 1.623022 1.771359
5 1.283117 1.523127 1.4 1.25 1.43926 1.402006 1.283142
6 0.411846 0.434077 0.5 0.45 0.874861 0.409934 0.412158
7 0.132236 0.153153 0.1 0.15 0.047021 0.133921 0.131434
8 −0.01749 0.025095 −0.1 −0.05 0.003388 −0.06073 −0.01886
9 −0.10348 −0.09535 −0.2 −0.15 −0.02146 −0.14514 −0.10399
10 −0.2234 −0.20863 −0.2 −0.25 −0.06392 −0.14514 −0.22237
11 −0.51925 −0.50962 −0.5 −0.55 −0.41923 −0.51961 −0.52098
12 −0.80825 −0.83379 −0.9 −0.9 −0.91896 −0.90329 −0.89182
13 −0.83351 −0.86847 −0.9 −0.9 −0.91896 −0.90329 −0.89182
14 −0.83351 −0.86847 −0.9 −0.9 −0.91896 −0.90329 −0.89182
15 −0.87163 −0.86847 −0.9 −0.9 −0.91896 −0.90329 −0.89182
16 −0.95437 −0.96838 −0.9 −0.9 −0.91896 −0.90329 −0.89182
17 −0.99782 −0.96838 −0.9 −0.95 −0.91896 −0.90329 −0.97592
18 −0.96838 −0.9 −0.95 −0.99863 −0.90329 −0.97592
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column, while the following three columns are k̂t values estimated via conventional
fuzzy time series method (Con.FTS); and the last three columns the modified FFTS
method (Mod.FFTS). In Table 5, the superiority of modified FFTS with average based
interval length determination approach in estimating kt can clearly be seen (When
columns 2 and 3 for conventional fuzzy time series and columns 2 and 8 for the
modified FFTS are compared). The last row of Table 5 is dedicated to k18 forecasts,
which are utilized in computing the forecasted ln-mortality rates.

4 Conclusion

In this study, a modified fuzzy LC method for modeling human mortality is proposed.
The proposed method employs SVD technique for fuzzification of observed ln-mor-
tality rates, so that the existing fluctuations in data can be captured. Moreover, a
modified first order fuzzy time series technique is developed to provide future forecasts
for mortality rates. The proposed modified FFTS method uses fuzzy inputs in contrast
to conventional time series approaches which employ crisp data.

The proposed method is applied to Finland mortality dataset and the outputs are
compared with the existing fuzzy LC approach. Numerical findings show that the
proposed method statistically outperforms the existing fuzzy method in terms of better
fits with smaller spreads in mortality rate estimations. Based on the estimated fuzzy
mortality indices achieved from mortality modeling part of the proposed method, future
mortality rates for Finland are forecasted. The forecasts obtained via the modified fuzzy
time series approach gives smaller mean absolute errors compared to the existing fuzzy
time series method.

Proposed method generates larger spreads for the starting time periods, and
youngest and eldest age cohorts. This sounds realistic as data collection and recording
techniques may be questionable to some degree for the early periods and there exist
extreme values in data for the youngest and eldest age cohorts. It is worth mentioning
that the fuzzy range estimated for demographic rates belonging to recent periods are
getting smaller with time.

As a future study, an aggregated fuzzy population modeling method can be
developed based on the proposed technique of this study. To accomplish this, the
proposed method should be extended to cover modeling human fertility and migration
as well. Moreover, higher order fuzzy time series models with different interval length
determination procedures can be incorporated into the modified fuzzy time series
approach to improve the forecast efficiencies.
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Abstract. In this paper, we consider the synchronization of uncertain
chaotic systems using predictive fuzzy PID control. The main aim of the
study is to show the role of prediction terms as a function of the sort
of the controller used to solve the optimization problem. Therefore, two
controllers, fuzzy PI+D and fuzzy PD+I controllers, are used in order to
compare their abilities concerning the synchronization of chaotic systems
in presence and absence of the prediction terms. This survey reveals that
the role of the prediction terms depends on the type of the controller used
to optimize the cost function. In the case of the fuzzy PD+I controller,
the prediction terms seem to be very useful; on the other hand, in the
case of the fuzzy PI+D, they restrict the ability of the controller, which
leads to reduce its accuracy. Synchronization of two uncertain Lorenz
systems is used to show the differences between the two cases.

Keywords: GPC · Predictive fuzzy PID control · Chaotic systems ·
Synchronization

1 Introduction

Synchronization of chaotic systems has been widely investigated in the last
decades. The focal point of chaos synchronization is secure communication,
where two systems must be defined, the master or driver system, and the
slave or response system. In order to generate synchronization signals, some
control methods can be used. However, uncertainties on the parameters cause
an obstruction to many classical control approaches. Therefore, some advanced
control approaches and improved schemes such as fuzzy logic control (FLC) [1],
neural network (NN) [2], adaptive control strategy [3], have been used to resolve
this problem.

Chaotic systems have special features, which make them behave in a very
interesting way. The common feature between normal nonlinear systems and
chaotic systems is that both are deterministic systems. However, chaotic systems
exhibit random behavior, which makes them unpredictable. The unpredictability
of chaotic systems comes from a phenomenon called the butterfly effect which
c© Springer International Publishing AG 2017
J.J. Merelo et al. (eds.), Computational Intelligence, Studies in Computational Intelligence 669,
DOI 10.1007/978-3-319-48506-5 12
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means the highly sensitive to initial conditions. On the other hand, predictive
control needs an accurate model in order to predict the future variation of the
controlled system, which make the study of predictive control with unpredictable
systems like chaotic systems is a very interesting topic.

Model predictive control (MPC) [4] is a control approach which consists in
using a model of a system to predict its output over an extended horizon. In
the presence of uncertainties, self-tuning and model-reference adaptive control
(MRAC) were used with MPC to solve many problems such as an open-loop
unstable plant, a nonminimum-phase plant, a plant with variable or unknown
dead-time and a plant with unknown order. However, there was not a general
algorithm to solve all these problems at once until the establishment of a general
algorithm by D.W. Clarke [5] in 1985 called generalized predictive control (GPC).

The drawback of GPC is the number of mathematical steps the algorithm
requests. In order to fix this problem, several advanced control approaches have
been involved in GPC such as fuzzy-model-based approach [1], Neural-network
[6], and PSO-based model predictive control [7]. One of the most interesting
approaches [8] is by involving fuzzy PID controllers to minimize the cost function
and to ensure the convergence between the controlled system and the reference
trajectory.

In this paper, we consider the performance of predictive fuzzy PID control
[8] for the synchronization of uncertain chaotic systems. Fuzzy PI+D and fuzzy
PD+I controllers are successively used to check the performance of the proposed
control method in the presence and absence of the prediction terms. For the pre-
diction of the future variation of the master and the slave system, an ARX
model is used. Lyapunov’s second method is used with particle swarm optimiza-
tion (PSO) algorithm to ensure the stability. To verify the performance of the
above predictive approach, we apply it for the synchronization of two uncertain
Lorenz systems.

The rest of the paper is arranged as follows: Section 2 presents synchroniza-
tion of chaotic systems. An overview of predictive fuzzy PID control is intro-
duced in Sect. 3. The main steps of the design of predictive fuzzy PID control
and stability analysis are given in Sect. 4. Simulation results are given in Sect. 5.
Conclusions are given in Sect. 6.

2 Synchronization of Uncertain Chaotic Systems

Let’s consider two n-dimensional chaotic systems, one is designed as the master
system:

ẋm = gm(x, t) 1 ≤ m ≤ n,

x = [x1, x2, ..., xn] ∈ �n (1)

and the second is the controlled slave system:

ẏm = fm(y, t) + um(t) 1 ≤ m ≤ n,

y = [y1, y2, ..., yn] ∈ �n (2)
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where f and g represent unknown nonlinear functions, and u ∈ �n is the control
input.

The Synchronization problem can be considered as a control problem which
consists in the design of an appropriate control law u(t) such that:

lim
t→∞ ‖y(t) − x(t)‖ → 0. (3)

The error states between the two systems are given by:

ėm = gm(y, t) − fm(x, t) + um(t) 1 ≤ m ≤ n, (4)

and the objective is how to design an efficient control law um(t) such that the
error states converge to zero when the time goes further.

3 An Overview of Predictive Fuzzy PID Control

Predictive fuzzy PID control can be considered as GPC algorithm based on fuzzy
PID controllers. GPC algorithm consists mainly in minimizing a cost function
that contains the predicted values. There have been many attempts to reduce
the complexity of the algorithm by involving some advanced control approaches.
To avoid the tedious mathematical steps, fuzzy PID controllers can be used [8].
For the synchronization, the following criterion is used:

Jm(k) =
∑N

i=−1
[xm(k − i) − ym(k − i)]2

+ λ
∑Nc

j=0
[Δum(k − j)]2

Jm(k) =
∑N

i=−1
[em(k − i)]2 + λ

∑Nc

j=0
[Δum(k − j)]2, (5)

where N is the prediction horizon, Nc is the control increment horizon, Δum

is the incremental output of a controller, λ ≥ 0 is a control increment weight.
Figure 1 represents the main structure of predictive fuzzy PID control for syn-
chronization of uncertain chaotic systems.

To get the predicted values of both systems, we use ARX model. For the
slave system, the model is given by:

ŷm(k + 1) = a1ym(k) + a2ym(k − 1) + a3ym(k − 2)
+ a4ym(k − 3) + b1um(k − 1), (6)
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Fig. 1. Block diagram of predictive fuzzy PID control.

while the model of the master is given by:

x̂m(k + 1) = a1xm(k) + a2xm(k − 1) + a3xm(k − 2)
+ a4xm(k − 3), (7)

where xm(k), ym(k) and um(k) are the outputs of the master system, the out-
puts of the slave system and the control inputs respectively; a1, a2, a3, a4, b1 are
constant parameters.

Thus, the one-step ahead predictor of the error states is given as:

êm(k + 1) = a1em(k) + a2em(k − 1) + a3em(k − 2)
+ a4em(k − 3) + b1um(k − 1). (8)

Nature inspired optimization algorithms, such as PSO algorithm [9,10], can
be used in order to facilitate the adjustment of the parameters of the one-step
ahead predictor. PSO algorithm uses the behavior of bird flock, which is called
swarm. The swarm has a number of particles. Each particle has a memory, and
the movement of a particle within the search region is given by a shift value,
called velocity, which is related to its memory and the position of the best particle
in the swarm.

The swarm of H particles is defined as:

S = {s1, s2, ..., sH} ,

and each one is given as:

sw = (sw1, sw2, ..., swh)T , w = 1, 2, ...,H, q = 1, 2, ..., h.
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Algorithm 1 . PSO algorithm.

Step 1. Set l = 1.

Step 2. Initial a random swarm S of particles within the search space, and set P = S.

Step 3. Evaluate the cost function of each particle of S and P , and get the index g of
the best position.

Step 4. while l < OI do

Step 5. Update S using (9) and (10).

Step 6. Evaluate S.

Step 7. Update P and redefine index g.

Step 8. l = l + 1;.

Step 9. end while.

Step 10. Print best position found.

Particles are moved within search space by using a proper position shift,
called velocity, and denoted as:

vw = (vw1, vw2, ..., vwh)T .

During the search process, each particle stores the best position which it has
ever visited in a memory set:

P = {p1, p2, ..., pH} ,

where
pw = (pw1, pw2, ..., pwh)T .

The velocity of each particle is given as follows:

vwq(l + 1) = vwq(l) + c1R1(pwq − swq(l))
+ c2R2(pgq(l) − swq(l)), (9)

swq(l + 1) = swq(l) + vwq, (10)

where R1, R2 are random variables between [0, 1]; c1 and c2 are weighting factors;
g is the index of the best position in memory set P .

The optimization algorithm based on PSO is described by the following steps:
Algorithm 1 is used to adjust off-line the parameters of the one -step ahead

predictors, where the particles are defined as

sw = (aw1, aw2, aw3, aw4, bw1)T ,

and the fitness of each particle of the swarm is obtained using the fitness algo-
rithm as described below:
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Algorithm 2 . Fitness algorithm.

Step 1. Set k = 1.

Step 2. While(k ≤ I) do

Step 3. Calculate the output of the one-step predictor of the slave system using (6).

Step 4. Calculate the cost function value using (5).

Step 5. Obtain u(k) using a fuzzy PID controller.

Step 6. Calculate the output of the slave system.

Step 7. Calculate the error between the slave system and the one-step predictor by
E(k) = |ym(k) − ŷm(k)|.
Step 8. k = k + 1;.

Step 9. end while.

Where I is the number of iterations. The fitness of a particle is obtained by
calculating the maximum value of E in the permanent case.

4 Design of Predictive Fuzzy PID Control

Fuzzy PID controllers have been categorized among the most successful con-
trol approaches in industrial applications. This set of controllers needs only
the output of the controlled system in order to find the right control action
(free model approach), which make them better than many classical control
approaches where an accurate mathematical model must be used. Fuzzy PID
controllers are derived from conventional PID controllers, in which fuzzy logic
control is involved in traditional PID controllers in order to increase their abilities
to handle the complexity of nonlinear systems with uncertainties and time-delay.
Therefore, Lu et al. [8] took the advantage of the simplicity of fuzzy PID con-
trollers in order to reduce the complexity of classical GPC algorithm. They pro-
posed to use Fuzzy PD+I controller in order to solve the optimization problem
and reach asymptotic stability. This approach doesn’t need an accurate model of
the controlled system, which makes it suitable to deal with the hypersensibility
of chaotic systems during the synchronization process. The idea of predictive
fuzzy PID control is to feed the fuzzy PID controllers with the cost function
variation Jm and the rate of change of the cost function variation J̇m instead of
the error signal em and the rate of change of the error signal ėm. In this paper,
fuzzy PI+D and fuzzy PD+I controllers are used to perform two tasks: drive the
slave system to track the output of the master system, make the cost function,
Jm, as small as possible.

4.1 Design of Fuzzy PI+D Controller

Fuzzy PI+D controller can be considered as the sum of two sub-controllers
[11,12], the fuzzy PI and Fuzzy D controllers. The fuzzy PI controller is derived
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from conventional PI control, which is given as follows:⎧⎨
⎩ uPIm(t) = KpmeJm(t) + Kim

∫
eJm(t)dt

eJm(t) = Jm(t) × Sign(em(t)) − Rm(t),
(11)

where Rm(t) is the reference for the optimal cost index; Kpm is the constant
proportional gain; Kim is integral gain. eJm(t) and em(t) are the error signal
from the optimal index Jm, the error between the master and the slave system,
respectively.

The convention analog PI controller is given in the frequency s-domain as
follows:

uPIm(s) = (Kc
pm +

Kc
im

s
)EJm(s). (12)

To get the digital version, the bilinear transform is applied s = (2/T )
(z − 1)/(z + 1), where T > 0, is the sampling time, which leads to the following
form:

uPIm(z) = (Kc
pm − Kc

imT

2
+

Kc
imT

1 − z−1
)EJm(z). (13)

Letting

Kpm = Kc
pm − Kc

imT

2
and Kim = Kc

imT

and using the inverse z-transform, we get the digital form of the controller:

uPIm(kT ) − uPIm(kT − T ) = Kpm[eJm(kT )
− eJm(kT − T )] + KimeJm(kT ). (14)

Dividing (14) by T , we obtain

ΔuPIm(kT ) = Kpmevm(kT ) + Kimepm(kT ), (15)

where

ΔuPIm(kT ) =
uPIm(kT ) − uPIm(kT − T )

T
, (16)

evm(kT ) =
eJm(kT ) − eJm(kT − T )

T
, (17)

epm(kT ) = eJm(kT ), (18)

ΔuPIm(kT ) is the incremental control output of the PI controller, epm(kT )
the error between the master and the slave system, and evm(kT ) is the error
rate. Equation (16) can be written as the following form:

uPIm(kT ) = uPIm(kT − T ) + TΔuPIm(kT ). (19)

To get the fuzzy PI controller, the increment control input TΔuPIm(kT ) will
be replaced by a fuzzy control term KuPImΔuPIm(kT ), so that:

uPIm(kT ) = uPIm(kT − T ) + KuPImΔuPIm(kT ), (20)
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where KuPIm is a fuzzy control gain.
The second part of fuzzy PI+D controller is derived from conventional D

controller that is given in s-domain, as follows:

uDm(s) = sKc
dmYm(s), (21)

where Ym(s) is the outputs of the slave system and Kc
dm is the control gain.

Using the bilinear transformation we get:

uDm(z) = Kc
dm

2
T

1 − z−1
1 + z−1

Ym(z), (22)

and then taking the inverse z-transform, we get the discrete version of the D
controller

uDm(kT ) + uDm(kT − T ) =
2Kc

dm

T
[ym(kT ) − ym(kT − T )]. (23)

Letting

Kdm =
2Kc

dm

T
,

then, dividing (23) by T, we get

ΔuDm(kT ) = KdmΔym(kT ), (24)

where

ΔuDm(kT ) =
uDm(kT ) + uDm(kT − T )

T
, (25)

and

Δym(kT ) =
ym(kT ) − ym(kT − T )

T
, (26)

We can notice from (24) that there is only one input of the D controller,
Δym(kT ), which is not enough to give the right information about the position
of the output in the design of the fuzzy rules (below the setpoint or above).
Therefore, another signal must be used in (24), which becomes

ΔuDm(kT ) = KdmΔym(kT ) + Kmydm(kT ), (27)

where Km = 1 and ydm(kT ) = −eJm(kT ).
Thus,

uDm(kT ) = −uDm(kT − T ) + TΔuDm(kT ). (28)

In order to get the fuzzy D controller, the term TΔuDm(kT ) is replaced by
KuDmΔuDm(kT )

uDm(kT ) = −uDm(kT − T ) + KuDmΔuDm(kT ). (29)
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Fig. 2. PI input membership functions. Fig. 3. PI output membership func-
tions.

Fig. 4. D input membership functions. Fig. 5. D output membership func-
tions.

The fuzzy PI+D is a combination of the two controllers, the fuzzy PI con-
troller (20) and the fuzzy D controller (29). Hence, the overall fuzzy PI+D
controller is given as follows.

uPIDm = uPIm(kT ) − uDm(kT )
= uPIm(kT − T ) + KuPImΔuPIm(kT ) + uDm(kT − T )

− KuDmΔuDm(kT ).
(30)

The inputs of the Fuzzy PI+D controller are the error epm(kT ), the error
rate evm(kT ), the rate of change of the output Δym(kT ) and ydm(kT ). On the
other hand, the fuzzy PI+D controller has only one output, the control output
uPIDm(kT ), which is used as input to the slave system. The design of the fuzzy
PI+D controller needs three parts: fuzzification, control rule base, and defuzzi-
fication. Figures 2 and 4 give the membership functions for the fuzzification of
the inputs, whereas Figs. 3 and 5 give the membership functions of the outputs.

The global stability can be reached by adjusting the fuzzy control rules of
both controllers, Fuzzy PI and Fuzzy D, separately. The fuzzy control rules are
assigned according to the structure of the controller and the position of the
outputs comparing to the reference trajectories.

By using the above membership functions, the following rules can be assigned
for the fuzzy PI controller:

(R1) IF epm = epm.n AND evm = evm.n THEN PI-output= o.n,
(R2) IF epm = epm.n AND evm = evm.p THEN PI-output= o.z,
(R3) IF epm = epm.p AND evm = evm.n THEN PI-output= o.z,
(R4) IF epm = epm.p AND evm = evm.p THEN PI-output= o.p,
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while the rules of the fuzzy D controller are given as follows:

(R5) IF ydm = ydm.p AND Δyvm = Δyvm.p THEN D-output= o.z,
(R6) IF ydm = ydm.p AND Δyvm = Δyvm.n THEN D-output= o.p,
(R7) IF ydm = ydm.n AND Δyvm = Δyvm.p THEN D-output= o.n,
(R8) IF ydm = ydm.n AND Δyvm = Δyvm.n THEN D-output= o.z.

From the rules, the control action coming from the fuzzy PI+D alternates
between the output of the fuzzy PI controller and fuzzy D controller. More
precisely, when the fuzzy PI control gets an action, the fuzzy D must set to
zero and vice versa. From (11), we can note that only the sing of the errors
em are used in order to locate the position of the outputs (below or above the
reference trajectories), the variation of the cost function cannot be used because
it is always positive. We suppose that for each step that xm is constant. Thus,
epm = xm − ym and evm = ėpm = 0 − ẏm are use used to design the rules. For
instance, if epm is negative (epm.n) means that the error is above the setpoint,
and if the error rate is negative (epm.n) implies the controller at the previous step
is driving the system output upward; the control output, ΔuPim(kT ), must be
set to be negative (R1), and the output of the fuzzy D controller must be set at
zero (R5). On the other hand, if epm is negative (epm.n) means that the error is
above the setpoint, and if the error rate is positive (epm.n) implies the controller
at the previous step is driving the system output downward; the control output,
ΔuPim(kT ), must be set to be zero (R2), and the role of the fuzzy D controller
is to add a positive value in order to make the output down faster (R6). The rest
of the rules can be interpreted by the same way. Usually in the defuzzification
step, center of mass formula is used to get the increment control outputs of both
fuzzy PI and fuzzy D controllers:

Δum =
∑

MVI×MVO∑
membership value of input , (31)

where MVI is membership value of input and MVO is output corresponding to
the membership value of input. The intersections between the inputs are divided
into 20 adjacent input combination (IC) regions, as shown in Figs. 6 and 7.

Each selected region has specific conditions; for example, in the region IC
1 the flowing conditions must be held: 0 < Kim.epm(kT ) < Lm, −Lm <
Kpm.evm(kT ) < 0 and Kpm.evm(kT ) + Kim.epm(kT ) > 0. By using the rules,
the defuzzification formula, and the following equations:

epm.p =
Kimepm(kT ) + Lm

2Lm
, epm.n =

−Kimepm(kT ) + Lm

2Lm
,

evm.p =
Kpmevm(kT ) + Lm

2Lm
, evm.n =

−Kpmevm(kT ) + Lm

2Lm
,

ydm.p =
Kydm(kT ) + Lm

2Lm
, ydm.n =

−Kmydm(kT ) + Lm

2Lm
,

Δym.p =
KdmΔym(kT ) + Lm

2Lm
, Δym.n =

−KdmΔym(kT ) + Lm

2Lm
,
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Fig. 6. Regions of the fuzzy PI con-
troller.

Fig. 7. Regions of the fuzzy D con-
troller.

we obtain the defuzzification formulas for all 20 regions of the fuzzy PI:

ΔuPIm(kT ) =
Lm[Kim.epm(kT ) + Kpm.evm(kT )]

2(2Lm − Kim. |epm(kT )|) , (in IC 1, 2, 5, 6) (32)

ΔuPIm(kT ) =
Lm[Kim.epm(kT ) + Kpm.evm(kT )]

2(2Lm − Kpm. |evm(kT )|) , (in IC 3, 4, 7, 8) (33)

ΔuPIm(kT ) = 1/2[Kpmevm(kT ) + Lm], (in IC 9, 10) (34)

ΔuPIm(kT ) = 1/2[Kimepm(kT ) + Lm], (in IC 11, 12) (35)

ΔuPIm(kT ) = 1/2[Kpmevm(kT ) − Lm], (in IC 13, 14) (36)

ΔuPIm(kT ) = 1/2[Kimepm(kT ) − Lm], (in IC 15, 16) (37)

ΔuPIm(kT ) = 0, (in IC 18, 20) (38)

ΔuPIm(kT ) = Lm, (in IC 17) (39)

ΔuPIm(kT ) = −Lm, (in IC 19) (40)

whereas for the fuzzy D controller we obtain the following formulas:

ΔuDm(kT ) =
Lm[Km.ydm(kT ) − Kdm.Δym(kT )]

2(2Lm − Km. |ydm(kT )|) , (in IC 1, 2, 5, 6) (41)

ΔuDm(kT ) =
Lm[Km.ydm(kT ) − Kdm.Δym(kT )]

2(2Lm − Kdm. |Δym(kT )|) , (in IC 3, 4, 7, 8) (42)

ΔuDm(kT ) = 1/2[−KdmΔym(kT ) + Lm], (in IC 9, 10) (43)

ΔuDm(kT ) = 1/2[Kmydm(kT ) − Lm], (in IC 11, 12) (44)

ΔuDm(kT ) = 1/2[−KdmΔym(kT ) − Lm], (in IC 13, 14) (45)
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ΔuDm(kT ) = 1/2[Kmydm(kT ) + Lm], (in IC 15, 16) (46)

ΔuDm(kT ) = 0, (in IC 17, 19) (47)

ΔuDm(kT ) = −Lm, (in IC 18) (48)

ΔuDm(kT ) = Lm. (in IC 20) (49)

4.2 Design of Fuzzy PD+I Controller

The design of the fuzzy PD+I controller passes through the same steps as the
fuzzy PI+D [8,13]. All sorts of fuzzy PID controllers derive from the conventional
forms, then the incremental outputs are replaced with the fuzzy terms. The
fuzzy core is designed using three steps: fuzzification, control rule base, and
defuzzification. The main part of the fuzzy core is the control rule base, which
is designed according to the structure of the controller, and the positions of the
inputs. In this section, we summarize the principal steps of the design of the
fuzzy PD+I controller.

The conventional form of the linear PD+I controller in s-domain is

uPIDm(s) = uPDm(s) + uIm(s),

where
uPDm(s) = (Kc

pm + sKc
dm)EJm(s), and uIm(s) =

Kc
im

s
EJm(s) =⇒

uPDm(z) = (Kpm + Kdm
1 − z−1
1 + z−1

)EJm(z), and uIm(z) = Kim
T

2
1 + z−1
1 − z−1

;

Kpm = Kc
pm,Kdm =

2
T

Kc
dm,Kim = Kc

im.
The discrete forms of the PD and the I controllers are given by using the

inverse z-transform as follows:

ΔuPDm(kT ) = Kpmdm(k) + Kdmrm(k), (50)

ΔuIm(kT ) = Kmrm(k) + KimeJm(k − 1), (51)

where

rm(kT ) =
eJm(k) − eJm(kT − T )

T
, (52)

dm(kT ) =
eJm(kT ) + eJm(kT − T )

T
, (53)

ΔuPDm(kT ) =
uPDm(kT ) + uPDm(kT − T )

T
, (54)

ΔuIm(kT ) =
uIm(k) − uIm(kT − T )

T
. (55)

Equations (50) and (51) can be rewritten as follows

uPDm(kT ) = −uPDm(kT − T ) + TΔuPDm(kT ), (56)
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Fig. 8. PD input membership func-
tions.

Fig. 9. PD output membership func-
tions.

Fig. 10. I input membership functions. Fig. 11. I output membership func-
tions.

uIm(kT ) = uIm(kT − T ) + TΔuIm(kT ). (57)

To get the fuzzy version of both controllers, the increment control inputs,
TΔuIm and TΔuPDm, are replaced by the fuzzy terms, (56) and (57) become:

uPDm(kT ) = −uPDm(kT − T ) + KuPDmΔuPDm(kT ), (58)

uIm(kT ) = uIm(kT − T ) + KuImΔuIm(kT ). (59)

Figures 8 and 10 give the membership functions for the fuzzification of the
inputs, whereas Figs. 9 and 11 give the membership functions of the outputs.

Using the above membership functions, the following rules can be assigned
for the fuzzy PD controller:

(R1) IF dm = dm.n AND rm = rm.n THEN PD-output= o.z,
(R2) IF dm = dm.n AND rm = rm.p THEN PD-output= o.n,
(R3) IF dm = dm.p AND rm = rm.n THEN PD-output= o.p,
(R4) IF dm = dm.p AND rm = rm.p THEN PD-output= o.z,

while the rules of the fuzzy I controller are given as follows:

(R5) IF eJm(kT − T ) = eJm.p AND rm = rm.p THEN I-output= o.p,
(R6) IF eJm(kT − T ) = eJm.p AND rm = rm.n THEN I-output= o.z,
(R7) IF eJm(kT − T ) = eJm.n AND rm = rm.p THEN I-output= o.z,
(R8) IF eJm(kT − T ) = eJm.n AND rm = rm.n THEN I-output= o.n.
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Fig. 12. Regions of the fuzzy PD con-
troller.

Fig. 13. Regions of the fuzzy I con-
troller.

Twenty adjacent input combination (IC) regions are used for the defuzzifica-
tion, as shown in Figs. 12 and 13. By using the rules, the defuzzification formula
(31), and the following equations:

dm.p =
Kpmdm(kT ) + Lm

2Lm
, dm.n =

−Kpmdm(kT − T ) + Lm

2Lm
,

rm.p =
Kdmrm(kT ) + Lm

2Lm
, rm.n =

−Kdmrm(kT ) + Lm

2Lm
,

eJm.p =
KimeJm(kT − T ) + Lm

2Lm
, eJm.n =

−KimeJm(kT − T ) + Lm

2Lm
,

rm.p =
Kmrm(kT ) + Lm

2Lm
, rm.n =

−Kmrm(kT ) + Lm

2Lm
,

we obtain the defuzzification formulas for all 20 regions of the fuzzy PD:

ΔuPDm(kT ) =
Lm[Kpm.dm(kT ) − Kdm.rm(kT )]

2(2Lm − Kpm. |dm(kT )|) , (in IC 1, 2, 5, 6) (60)

ΔuPDm(kT ) =
Lm[Kpm.dm(kT ) − Kdm.rm(kT )]

2(2Lm − Kdm. |rm(kT )|) , (in IC 3, 4, 7, 8) (61)

ΔuPDm(kT ) = 1/2[−Kdmrm(kT ) + Lm], (in IC 9, 10) (62)

ΔuPDm(kT ) = 1/2[Kpmdm(kT ) − Lm], (in IC 11, 12) (63)

ΔuPDm(kT ) = 1/2[−Kdmrm(kT ) − Lm], (in IC 13, 14) (64)

ΔuPDm(kT ) = 1/2[Kpmdm(kT ) + Lm], (in IC 15, 16) (65)

ΔuPDm(kT ) = 0, (in IC 19, 17) (66)

ΔuPDm(kT ) = −Lm, (in IC 18) (67)
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ΔuPDm(kT ) = Lm, (in IC 20) (68)

whereas for the fuzzy I controller, we obtain the following formulas:

ΔuIm(kT ) =
Lm[Kim.eJm(kT − T ) + Km.rm(kT )]

2(2Lm − Kim. |eJm(kT − T )|) , (in IC 1, 2, 5, 6) (69)

ΔuIm(kT ) =
Lm[Kim.eJm(kT − T ) + Km.rm(kT )]

2(2Lm − Km. |rm(kT )|) , (in IC 3, 4, 7, 8) (70)

ΔuIm(kT ) = 1/2[Kmrm(kT ) + Lm], (in IC 9, 10) (71)

ΔuIm(kT ) = 1/2[KimeJm(kT − T ) + Lm], (in IC 11, 12) (72)

ΔuIm(kT ) = 1/2[Kmrm(kT ) − Lm], (in IC 13, 14) (73)

ΔuIm(kT ) = 1/2[KimeJm(kT − T ) − Lm], (in IC 15, 16) (74)

ΔuIm(kT ) = 0, (in IC 20, 18) (75)

ΔuIm(kT ) = −Lm, (in IC 19) (76)

ΔuIm(kT ) = Lm. (in IC 17) (77)

4.3 Stability Analysis

The general stability condition can be derived by using Lyapunov’s second
method [8]. The Lyapunov function is chosen as follows:

V = e2Jm/2 > 0, (78)

where eJm = Jm(k). The time derivation of V is

V̇ = eJmėJm ≈ Jm(k) [Jm(k) − Jm(k − 1)]

=

⎡
⎣ N∑
i=−1

em(k − i)2 + λ

Nc∑
j=0

(Δum(k − j))2

⎤
⎦

×
⎡
⎣ N∑
i=−1

em(k − i)2 + λ

Nc∑
j=0

(Δum(k − j))2

−
N∑

i=−1

em(k − 1 − i)2 − λ

Nc∑
j=0

(Δum(k − 1 − j))2

⎤
⎦

=

⎡
⎣ N∑
i=−1

em(k − i)2 + λ

Nc∑
j=0

(Δum(k − j))2

⎤
⎦

× [em(k + 1) − em(k − 1 − N) + Δum(k) − Δum(k − 1 − Nc)] .
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Thus, if the two conditions em(k)−em(k−1) < 0 and Δum(k)−Δum(k−1)
< 0 are held at every step k then V̇ will be less than zero.

The stability conditions of the fuzzy PI+D are given as follows:

C1 = ėm ≈ em(k) − em(k − 1)

= gm(k) − fm(k) + um(k)

= gm(k) − fm(k) + KuPIm [Kimepm(kT )

+ lKpm
Jm(kT ) − Jm(kT − T )

T

]

− KuDm

[
−Jm(kT ) + Kdm

ym(kT ) − ym(kT − T )

T

]
+ uPIm(kT − T )

+ uDm(kT − T ) < 0,

(79)

C2 = Δum(kT ) − Δum(kT − T )

= um(k) − 2um(k − 1) + um(k − 2)

= KuPImKim [Jm(kT ) − 2Jm(kT − T ) + Jm(kT − 2T )]

+ KuPImKpm

[
Jm(kT ) − 3Jm(kT − T ) + 3Jm(kT − 2T ) − Jm(kT − 3T )

T

]

+ KuDm [Jm(kT ) − 2Jm(kT − T ) + Jm(kT − 2T )]

+ KuDmKdm

[−ym(kT ) + 3ym(kT − T ) − 3ym(kT − 2T ) + ym(kT − 3T )

T

]

+ uPIm(kT − T ) + uDm(kT − T )

− 2uPIm(kT − 2T ) − 2uDm(kT − 2T )

+ uPIm(kT − 3T ) + uDm(kT − 3T ) < 0,

(80)

whereas the stability conditions of the fuzzy PD+I are given as follows:

C3 = ėm ≈ em(k) − em(k − 1)

= gm(k) − fm(k) + um(k)

= gm(k) − fm(k)

+ KuPDm

[
Kpm

Jm(kT ) + Jm(kT − T )

T
+ Kdm

Jm(kT ) − Jm(kT − T )

T

]

+ KuIm

[
Kim

Jm(kT ) − Jm(kT − T )

T
+ KimJm(kT − T )

]
− uPDm(kT − T )

+ uIm(kT − T ) < 0,

(81)

C4 = Δum(kT ) − Δum(kT − T )

= um(k) − 2um(k − 1) + um(k − 2)

= KuPDmKpm

[
Jm(kT ) − Jm(kT − T ) − Jm(kT − 2T ) + Jm(kT − 3T )

T

]

+ KuPDmKdm

[
Jm(kT ) − 3Jm(kT − T ) + 3Jm(kT − 2T ) − Jm(kT − 3T )

T

]

+ KuImKim

[
Jm(kT ) − 3Jm(kT − T ) + 3Jm(kT − 2T ) − Jm(kT − 3T )

T

+ Jm(kT − T ) − 2Jm(kT − 2T ) + Jm(kT − 3T )]

− uPDm(kT − T ) + 2uPDm(kT − 2T ) − uPDm(kT − 3T )

+ uIm(kT − T ) − 2uIm(kT − 3T ) + uIm(kT − 3T ) < 0.

(82)
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PSO algorithm, described in Algorithm1, can be used in order to find on-line
the gains of both controllers. In the case of the fuzzy PI+D controller, particles
are defined as

sw = (Kwim,Kwpm,Kwdm,KwuPIm,KwuDm)T ,

whereas in the case of the fuzzy PD+I controller, particles are defined as

sw = (Kwim,Kwpm,Kwdm,KwuPDm,KwuIm)T .

The fitness of the particles is defined using the stability conditions. For the
fuzzy PI+D, the fitness is given as follows:

FPI+D = min {C1, C2} ,

while the fitness of the particles in the case of fuzzy PD+I is given

FPD+I = min {C3, C4} .

Moreover, the initial swarm S is chosen using the following formula:

S = em(kT )rand(sup |em(kT )|),
where rand(sup |em(kT )|) is a random matrix with random values between
−sup |em(kT )|) and sup |em(kT )|).

In Lyapunov sense, the minimization of the function V̇ using the stability
conditions means that the PSO algorithm must find an optimal solution in order
to make V̇ converge to zero. Therefore, if the best minimum found so far is above
zero, the algorithm must keep looking for the minimum. On the other hand, if
the minimum is below zero, the algorithm must look for the maximum at the
next iteration.

5 Simulation Results

The performance of the proposed algorithm is checked for the synchronization
of two uncertain Lorenz systems.

The master is defined by:⎧⎨
⎩

ẋ1 = α1(x2 − x1)
ẋ2 = (−x1x3 + ρ1x1 − x2),
ẋ3 = x1x2 − β1x3

(83)

where x1, x2, x3 are the state variables and α1, ρ1, β1 are positive uncertain para-
meters of the system.

And the slave by: ⎧⎨
⎩

ẏ1 = α2(y2 − y1) + u1

ẏ2 = (−y1y3 + ρ2y1 − y2) + u2,
ẏ3 = y1y2 − β2y3 + u3

(84)
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Fig. 14. One step predictors of the states x2, y2 using PI+D controller.

where y1, y2, y3 are the state variables, α2, ρ2, β2 are positive uncertain parame-
ters and u1, u2, u3 are the outputs of the controllers.

The synchronization errors are defined as:⎧⎨
⎩

e1 = x1 − y1
e2 = x2 − y2,
e3 = x3 − y3

(85)

Fig. 15. One step predictors of the states x2, y2 using PD+I controller.
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Fig. 16. A sample of the variation of the parameters of the fuzzy PD+I controller.

and the error states as:⎧⎨
⎩

ė1 = −α2(y2 − y1) + α1(x2 − x1) + u1

ė2 = −ρ2y1 + y2 + y1y3 + ρ1x1 − x2 − x1x3 + u2.
ė3 = −y1y2 + β2y3 + x1x2 − β1x3 + u3

(86)

To synchronize these chaotic systems, we chose the following optimal index:

Jm(k) =
∑3

i=−1 [em(k − i)]2 + λ
∑3

j=0 [Δum(k − j)]2 , (87)

where λ = 0.001.

Fig. 17. A sample of the variation of the parameters of the fuzzy PI+D controller.
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The one-step predictor of the error states is given as:

em(k + 1) = 0.9497em(k) + 0.0141em(k − 1)
+ 0.6806em(k − 2) + 0.6440em(k − 3)
+ 0.051um(k − 1). (88)

Figures 14 and 15 show the one step predictors of the states x2, y2, and their
prediction errors.

For the numerical simulation, the parameters of the master and the slave
systems are chosen respectively as:
α1 = 10, ρ1 = 28, β1 = 8/3,
α2 = 10.5, ρ2 = 25, β2 = 8/3 + 0.2.

The initial conditions of the master and the slave systems are taken as:
x1(0) = 2, x2(0) = 10, x3(0) = −6,
y1(0) = −2, y2(0) = 5, y3(0) = 1.

Fig. 18. Synchronization of the Lorenz systems and cost functions variations without
prediction terms using fuzzy PD+I controller.



236 Z. Driss and N. Mansouri

Fig. 19. Synchronization of the Lorenz systems and cost functions variations with
prediction terms using fuzzy PD+I controller.

In the first part of the simulation, we present two results obtained using
fuzzy PD+I controller. One with prediction terms and the other without. The
parameters of the fuzzy PD+I are chosen as: Km = 1, Lm = 1. The rest of
the parameters are assigned on-line using the PSO algorithm with the stability
conditions as shown in Fig. 16.

In the second part, fuzzy PI+D controller is used instead of fuzzy PD+I
controller. The variation of the parameters of the fuzzy PI+D controller are
shown in Fig. 17.

Figures 18 and 19 show the results of the synchronization of the two systems
and the variations of the cost functions without prediction terms and with pre-
diction terms respectively for the first case, while Figs. 20 and 21 give the results
for the second case.

For the first case, we can notice that in the absence of prediction terms,
the synchronization between the two systems is destroyed, and the cost func-
tions take huge values. However, in the presence of the prediction terms, the
synchronization is achieved and the cost functions converge to zero.
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Fig. 20. Synchronization of the Lorenz systems and cost functions variations without
prediction terms using fuzzy PI+D controller.

For the second case, the synchronization between the two systems is achieved
with and without prediction terms.

Table 1 summarizes all the results obtained by the two controllers with and
without prediction terms. In the case of fuzzy PD+I controller, one-step pre-
diction terms ensure the synchronization between the two systems. However,
with the fuzzy PI+D controller, they make a noise and reduce the performance
of the controller. Moreover, the performance of fuzzy PI+D controller is better
than the fuzzy PD+I controller in the two cases. The table shows also that the
prediction terms worsen the results, and this can be explained by: the modeling
error which is considered as perturbation terms added to the cost functions, the
unpredictability behavior of chaotic systems, or the structure of the proposed
control method which may need improvements. Although the structure of the
algorithm is simpler than many others [14–18], the role of the prediction is still
questionable.
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Fig. 21. Synchronization of the Lorenz systems and cost functions variations with
prediction terms using fuzzy PI+D controller.

Table 1. Synchronization and cost function errors.

Without prediction terms With prediction terms

PD+I PI+D PD+I PI+D∑3
m=1 em 1.1 10ˆ5 60.8 1092.9 89.09∑3
m=1 eJm 2.15 10ˆ7 285.11 6486.7 3699.6

6 Conclusion

This paper investigated the performance of predictive fuzzy PID control con-
cerning synchronization of uncertain chaotic systems. Using Lyapunov’s second
method and PSO optimization algorithm the synchronization between the two
systems is achieved. However, the performance of the two controllers can be
affected by the presence or the absence of the prediction terms. In the case
of the fuzzy PD+I controller, the prediction terms give a helping hand to the
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controller in order to reach the synchronization. On the other hand, in the case
of the fuzzy PI+D controller, the prediction terms cause problems and reduce
the ability of the controller. Some numerical results are given to demonstrate the
role of the prediction terms for synchronization of two uncertain Lorenz systems.
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Abstract. Concerning the three fundamental first-order fuzzy log-
ics, the set of logically valid formulae is Π2-complete for �Lukasiewicz
logic, Π2-hard for Product logic, and Σ1-complete for Gödel logic, as
with classical first-order logic. Among these fuzzy logics, only Gödel
logic is recursively axiomatisable. Hence, it was necessary to provide a
hyperresolution-based proof method suitable for automated deduction,
as one has done for classical logic. As another step, we can incorporate
a countable set of intermediate truth constants of the form c̄, c ∈ (0, 1),
together with the equality, ���, strict order, ≺≺≺, projection, ΔΔΔ, operators
in Gödel logic; and modify the hyperresolution calculus, inferring over
so-called order clauses. We shall investigate the deduction problem of
a formula from a countable theory in this expansion and the so-called
canonical standard completeness, where the semantics of Gödel logic is
given by the standard G-algebra as well as truth constants are inter-
preted by ‘themselves’. The hyperresolution calculus is refutation sound
and complete for a countable order clausal theory under a certain con-
dition for the set of truth constants occurring in the theory. We get an
affirmative solution to the open problem of recursive enumerability of
unsatisfiable formulae in this expansion of Gödel logic.

Keywords: Gödel logic · Resolution · Many-valued logics · Automated
deduction

1 Introduction

In many real-world applications, one may be interested in representation and
inference with explicit partial truth; besides the truth constants 0, 1, interme-
diate truth constants are involved in. In the literature, two main approaches to
expansions with truth constants, are described. Historically, the first one has
been introduced in [1], where the propositional �Lukasiewicz logic is augmented
by truth constants r̄, r ∈ [0, 1], Pavelka’s logic (PL). A formula of the form
r̄ → φ evaluated to 1 expresses that the truth value of φ is greater than or equal
to r. In [2], further development of evaluated formulae, and in [3], Rational
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Pavelka’s logic (RPL) - a simplification of PL exploiting book-keeping axioms,
are described. Another approach relies on traditional algebraic semantics. Var-
ious completeness results for expansions of t-norm based logics with countably
many truth constants are investigated, among others, in [4–10].

In [11–15], we have generalised the well-known hyperresolution principle to
the first-order Gödel logic for the general case. Our approach is based on trans-
lation of a formula of Gödel logic to an equivalent satisfiable finite order clausal
theory, consisting of order clauses. We have introduced a notion of quantified
atom: a formula a is a quantified atom if a = Qx p(t0, . . . , tτ ) where Q is a quan-
tifier (∀, ∃); p(t0, . . . , tτ ) is an atom; x is a variable occurring in p(t0, . . . , tτ );
for all i ≤ τ , either ti = x or x does not occur in ti (ti is a free term in the
quantified atom). The notion of quantified atom is all important. It permits us
to extend classical unification to quantified atoms without any additional com-
putational cost. Two quantified atoms Qx p(t0, . . . , tτ ) and Q′x′ p′(t′0, . . . , t

′
τ )

are unifiable if Q = Q′, x = x′, p = p′, and the left-right sequence of free
terms of Qxp(t0, . . . , tτ ) is unifiable with the left-right sequence of free terms of
Q′x′ p′(t′0, . . . , t

′
τ ) in the standard manner. An order clause is a finite set of order

literals of the form ε1 � ε2 where εi is an atom or a quantified atom, and � is the
connective � or ≺. � and ≺ are interpreted by the equality and standard strict
linear order on [0, 1], respectively. On the basis of the hyperresolution principle,
a calculus operating over order clausal theories, has been devised. The calculus is
proved to be refutation sound and complete for the countable case with respect
to the standard G-algebra G = ([0, 1],≤,∨∨∨,∧∧∧,⇒⇒⇒, ,���,≺≺≺,ΔΔΔ, 0, 1) augmented by
the binary operators ���, ≺≺≺ for �, ≺, respectively, and by the unary operator ΔΔΔ for
the projection connective Δ. As another step, one may incorporate a countable
set of intermediate truth constants of the form c̄, c ∈ (0, 1), to get a modification
of the hyperresolution calculus suitable for automated deduction with explicit
partial truth [13]. We shall investigate the so-called canonical standard complete-
ness, where the semantics of Gödel logic is given by the standard G-algebra G
and truth constants are interpreted by ‘themselves’. Note that the Hilbert-style
calculus for Gödel logic introduced in [3], is not suitable for expansion with inter-
mediate truth constants. We have φ � ψ if and only if φ |= ψ (wrt. G). However,
that cannot be preserved after adding intermediate truth constants. Let c ∈ (0, 1)
and a be an atom different from a constant. Then c̄ |= a (c̄ is unsatisfiable) but
 |= c̄ → a, � c̄ → a, c̄ � a (from the soundness and the deduction-detachment
theorem for this calculus). So, we cannot achieve a strict canonical standard
completeness after expansion with intermediate truth constants. On the other
side, such a completeness can be feasible for our hyperresolution calculus under a
certain condition. We say that a set {0, 1} ⊆ X of truth constants is admissible
with respect to suprema and infima if, for all ∅ = Y1, Y2 ⊆ X and

∨∨∨
Y1 =

∧∧∧
Y2,∨∨∨

Y1 ∈ Y1,
∧∧∧

Y2 ∈ Y2 (truth constants are interpreted by ‘themselves’). Then the
hyperresolution calculus is refutation sound and complete for a countable order
clausal theory if the set of truth constants occurring in the theory, is admissible
with respect to suprema and infima. This condition obviously covers the case of
finite order clausal theories. We solve the deduction problem of a formula from a
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countable theory. As an interesting consequence, we get an affirmative solution
to the open problem of recursive enumerability of unsatisfiable formulae in Gödel
logic with truth constants and the equality, ���, strict order, ≺≺≺, projection, ΔΔΔ,
operators, which strengthens a similar result for prenex formulae of Gödel logic
with ΔΔΔ [16,17]. Some applications of our hyperresolution calculus may lead to
computational linguistics, to design and analysis of scientific (natural) language
processing systems [18,19].

The paper is organised as follows. Section 2 gives the basic notions and nota-
tion concerning the first-order Gödel logic. Section 3 deals with clause form trans-
lation. In Sect. 4, we describe the hyperresolution calculus and show its refuta-
tional soundness, completeness. Section 5 provides an example for translation
and deduction. Section 6 brings conclusions.

2 First-Order Gödel Logic

Throughout the paper, we shall use the common notions and notation of first-
order logic. N | Z designates the set of natural | integer numbers and ≤ | < the
standard order | strict order on N | Z. By L we denote a first-order language.
VarL | FuncL | PredL | TermL | GTermL | AtomL | GAtomL denotes the set of all
variables | function symbols | predicate symbols | terms | ground terms | atoms |
ground atoms of L. arL : FuncL ∪ PredL −→ N denotes the mapping assigning
an arity to every function and predicate symbol of L. We assume truth constants
- nullary predicate symbols 0, 1 ∈ PredL, arL(0) = arL(1) = 0; 0 denotes the
false and 1 the true in L. Let CL ⊆ (0, 1) be countable. In addition, we assume
a countable set of nullary predicate symbols CL = {c̄ | c̄ ∈ PredL, arL(c̄) =
0, c ∈ CL} ⊆ PredL; {0}, {1}, CL are pairwise disjoint. 0, 1, c̄ ∈ CL are called
truth constants. We denote TconsL = {0, 1} ∪ CL ⊆ PredL. Let X ⊆ TconsL.
We denote X = {0 | 0 ∈ X} ∪ {1 | 1 ∈ X} ∪ {c | c̄ ∈ X ∩ CL} ⊆ [0, 1]. We
introduce a new unary connective Δ, Delta, and binary connectives �, equal-
ity, ≺, strict order. By OrdFormL we designate the set of all so-called order
formulae of L built up from AtomL and VarL using the connectives: ¬, nega-
tion, Δ, ∧, conjunction, ∨, disjunction, →, implication, ↔, equivalence, �,
≺, and the quantifiers: ∀, the universal one, ∃, the existential one.1 In the
paper, we shall assume that L is a countable first-order language; hence, all
the above mentioned sets of symbols and expressions are countable. Let ε |
εi, 1 ≤ i ≤ m | υi, 1 ≤ i ≤ n, be either an expression or a set of expres-
sions or a set of sets of expressions of L, in general. By vars(ε1, . . . , εm) ⊆
VarL | freevars(ε1, . . . , εm) ⊆ VarL | boundvars(ε1, . . . , εm) ⊆ VarL |
funcs(ε1, . . . , εm) ⊆ FuncL | preds(ε1, . . . , εm) ⊆ PredL | atoms(ε1, . . . , εm) ⊆
AtomL we denote the set of all variables | free variables | bound variables | func-
tion symbols | predicate symbols | atoms of L occurring in ε1, . . . , εm. ε is closed
iff freevars(ε) = ∅. By � we denote the empty sequence. By |ε1, . . . , εm| = m

1 We assume a decreasing connective and quantifier precedence: ∀, ∃, ¬, Δ, �, ≺, ∧,
∨, →, ↔.
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we denote the length of the sequence ε1, . . . , εm. We define the concatena-
tion of the sequences ε1, . . . , εm and υ1, . . . , υn as (ε1, . . . , εm), (υ1, . . . , υn) =
ε1, . . . , εm, υ1, . . . , υn. Note that concatenation of sequences is associative.

Let X, Y , Z be sets, Z ⊆ X; f : X −→ Y be a mapping. By ‖X‖ we denote
the set-theoretic cardinality of X. X being a finite subset of Y is denoted as
X ⊆F Y . We designate P(X) = {x |x ⊆ X}; P(X) is the power set of X;
PF (X) = {x |x ⊆F X}; PF (X) is the set of all finite subsets of X; f [Z] =
{f(z) | z ∈ Z}; f [Z] is the image of Z under f ; f |Z = {(z, f(z)) | z ∈ Z}; f |Z
is the restriction of f onto Z. Let γ ≤ ω. A sequence δ of X is a bijection
δ : γ −→ X. Recall that X is countable if and only if there exists a sequence of
X. Let I be a set and Si = ∅, i ∈ I, be sets. A selector S over {Si | i ∈ I} is a
mapping S : I −→ ⋃{Si | i ∈ I} such that for all i ∈ I, S(i) ∈ Si. We denote
Sel({Si | i ∈ I}) = {S | S is a selector over {Si | i ∈ I}}. R designates the set
of real numbers and ≤ | < the standard order | strict order on R. We denote
R

+
0 = {c | 0 ≤ c ∈ R}, R

+ = {c | 0 < c ∈ R}; [0, 1] = {c | 0 ≤ c ≤ 1, c ∈ R};
[0, 1] is the unit interval. Let c ∈ R

+. log c denotes the binary logarithm of c.
Let f, g : N −→ R

+
0 . f is of the order of g, in symbols f ∈ O(g), iff there exist

n0 ∈ N and c∗ ∈ R
+
0 such that for all n ≥ n0, f(n) ≤ c∗ · g(n).

We define the size of term of L |t| : TermL −→ N by recursion on the
structure of t:

|t| =
{

1 if t ∈ VarL,
1 +

∑τ
i=1 |ti| if t = f(t1, . . . , tτ ).

Subsequently, we define the size of order formula of L |φ| : OrdFormL −→ N by
recursion on the structure of φ:

|φ| =

⎧⎪⎪⎨
⎪⎪⎩

1 +
∑τ

i=1 |ti| if φ = p(t1, . . . , tτ ) ∈ AtomL,
1 + |φ1| if φ = �φ1,
1 + |φ1| + |φ2| if φ = φ1 � φ2,
2 + |φ1| if φ = Qx φ1.

Let T ⊆F OrdFormL. We define the size of T as |T | =
∑

φ∈T |φ|. By varseq(φ),
vars(varseq(φ)) ⊆ VarL, we denote the sequence of all variables of L occurring
in φ which is built up via the left-right preorder traversal of φ. For example,
varseq(∃w (∀x p(x, x, z) ∨ ∃y q(x, y, z))) = w, x, x, x, z, y, x, y, z and |w, x, x, x, z,
y, x, y, z| = 9. A sequence of variables will often be denoted as x̄, ȳ, z̄, etc. Let
Q ∈ {∀,∃} and x̄ = x1, . . . , xn be a sequence of variables of L. By Qx̄φ we
denote Qx1 . . . Qxn φ.

Gödel logic is interpreted by the standard G-algebra augmented by the oper-
ators ���, ≺≺≺, ΔΔΔ for the connectives �, ≺, Δ, respectively.

G = ([0, 1],≤,∨∨∨,∧∧∧,⇒⇒⇒, ,���,≺≺≺,ΔΔΔ, 0, 1)

where ∨∨∨ | ∧∧∧ denotes the supremum | infimum operator on [0, 1];

a⇒⇒⇒ b =

{
1 if a ≤ b,

b else;
a =

{
1 if a = 0,

0 else;
a��� b =

{
1 if a = b,

0 else;
a≺≺≺ b =

{
1 if a < b,

0 else;

ΔΔΔ a =

{
1 if a = 1,

0 else.



Expanding Gödel Logic 245

Recall that G is a complete linearly ordered lattice algebra; ∨∨∨ | ∧∧∧ is commutative,
associative, idempotent, monotone; 0 | 1 is its neutral element;2 the residuum
operator ⇒⇒⇒ of ∧∧∧ satisfies the condition of residuation:

for all a, b, c ∈ G, a∧∧∧ b ≤ c ⇐⇒ a ≤ b⇒⇒⇒ c; (1)

Gödel negation satisfies the condition:

for all a ∈ G, a = a⇒⇒⇒ 0; (2)

the following properties, which will be exploited later, hold:3

for all a, b, c ∈ G,

a∨∨∨ b∧∧∧ c = (a∨∨∨ b)∧∧∧(a∨∨∨ c), (distributivity of ∨∨∨ over ∧∧∧) (3)
a∧∧∧(b∨∨∨ c) = a∧∧∧ b∨∨∨ a∧∧∧ c, (distributivity of ∧∧∧ over ∨∨∨) (4)
a⇒⇒⇒ b∨∨∨ c = (a⇒⇒⇒ b)∨∨∨(a⇒⇒⇒ c), (5)
a⇒⇒⇒ b∧∧∧ c = (a⇒⇒⇒ b)∧∧∧(a⇒⇒⇒ c), (6)
a∨∨∨ b⇒⇒⇒ c = (a⇒⇒⇒ c)∧∧∧(b⇒⇒⇒ c), (7)
a∧∧∧ b⇒⇒⇒ c = (a⇒⇒⇒ c)∨∨∨(b⇒⇒⇒ c), (8)
a⇒⇒⇒(b⇒⇒⇒ c) = a∧∧∧ b⇒⇒⇒ c, (9)
((a⇒⇒⇒ b)⇒⇒⇒ b)⇒⇒⇒ b = a⇒⇒⇒ b, (10)
(a⇒⇒⇒ b)⇒⇒⇒ c = ((a⇒⇒⇒ b)⇒⇒⇒ b)∧∧∧(b⇒⇒⇒ c)∨∨∨ c, (11)
(a⇒⇒⇒ b)⇒⇒⇒ 0 = ((a⇒⇒⇒ 0)⇒⇒⇒ 0)∧∧∧(b⇒⇒⇒ 0), (12)
ΔΔΔ a = a��� 1. (13)

An interpretation I for L is a triple
(UI , {fI | f ∈ FuncL}, {pI | p ∈ PredL})

defined as follows: UI = ∅ is the universum of I; every f ∈ FuncL is interpreted as
a function fI : UarL(f)

I −→ UI ; every p ∈ PredL is interpreted as a [0, 1]-relation
pI : UarL(p)

I −→ [0, 1]. A variable assignment in I is a mapping VarL −→ UI .
We denote the set of all variable assignments in I as SI . Let e ∈ SI and u ∈ UI .
A variant e[x/u] ∈ SI of e with respect to x and u is defined as

e[x/u](z) =
{

u if z = x,
e(z) else.

Let t ∈ TermL, x̄ be a sequence of variables of L, φ ∈ OrdFormL. In I with
respect to e, we define the value ‖t‖I

e ∈ UI of t by recursion on the structure of
t, the value ‖x̄‖I

e ∈ U |x̄|
I of x̄, the truth value ‖φ‖I

e ∈ [0, 1] of φ by recursion on
the structure of φ, as follows:

2 Using the commutativity, associativity, idempotence, monotonicity, neutral element
of ∨∨∨ | ∧∧∧ will not explicitly be referred to.

3 We assume a decreasing operator precedence: , ΔΔΔ, ���, ≺≺≺, ∧∧∧, ∨∨∨, ⇒⇒⇒.
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t ∈ VarL, ‖t‖I
e = e(t);

t = f(t1, . . . , tτ ), ‖t‖I
e = fI(‖t1‖I

e , . . . , ‖tτ‖I
e );

x̄ = x1, . . . , x|x̄|, ‖x̄‖I
e = e(x1), . . . , e(x|x̄|);

φ = 0, ‖φ‖I
e = 0;

φ = 1, ‖φ‖I
e = 1;

φ = c̄, ‖φ‖I
e = c;

φ = p(t1, . . . , tτ ), ‖φ‖I
e = pI(‖t1‖I

e , . . . , ‖tτ‖I
e );

φ = ¬φ1, ‖φ‖I
e = ‖φ1‖I

e ;

φ = φ1 ∧ φ2, ‖φ‖I
e = ‖φ1‖I

e ∧∧∧ ‖φ2‖I
e ;

φ = φ1 ∨ φ2, ‖φ‖I
e = ‖φ1‖I

e ∨∨∨ ‖φ2‖I
e ;

φ = φ1 → φ2, ‖φ‖I
e = ‖φ1‖I

e ⇒⇒⇒ ‖φ2‖I
e ;

φ = φ1 ↔ φ2, ‖φ‖I
e = (‖φ1‖I

e ⇒⇒⇒‖φ2‖I
e )∧∧∧(‖φ2‖I

e ⇒⇒⇒‖φ1‖I
e );

φ = φ1 � φ2, ‖φ‖I
e = ‖φ1‖I

e ��� ‖φ2‖I
e ;

φ = φ1 ≺ φ2, ‖φ‖I
e = ‖φ1‖I

e ≺≺≺ ‖φ2‖I
e ;

φ = ∀xφ1, ‖φ‖I
e =

∧∧∧
u∈UI

‖φ1‖I
e[x/u];

φ = ∃xφ1, ‖φ‖I
e =

∨∨∨
u∈UI

‖φ1‖I
e[x/u].

Let φ be closed. Then, for all e, e′ ∈ SI , ‖φ‖I
e = ‖φ‖I

e′ . Let e ∈ SI = ∅. We
denote ‖φ‖I = ‖φ‖I

e .
Let L | L′ be a first-order language and I | I ′ be an interpretation for L |

L′. L′ is an expansion of L iff FuncL′ ⊇ FuncL and PredL′ ⊇ PredL; on the
other side, we say L is a reduct of L′. I ′ is an expansion of I to L′ iff L′ is
an expansion of L, UI′ = UI , for all f ∈ FuncL, fI′

= fI , for all p ∈ PredL,
pI′

= pI ; on the other side, we say I is a reduct of I ′ to L, in symbols I = I ′|L.
An order theory of L is a set of order formulae of L. Let φ, φ′ ∈ OrdFormL,

T ⊆ OrdFormL, e ∈ SI . φ is true in I with respect to e, written as I |=e φ,
iff ‖φ‖I

e = 1. I is a model of φ, in symbols I |= φ, iff, for all e ∈ SI , I |=e φ.
I is a model of T , in symbols I |= T , iff, for all φ ∈ T , I |= φ. φ is a
logically valid formula iff, for every interpretation I for L, I |= φ. φ is equivalent
to φ′, in symbols φ ≡ φ′, iff, for every interpretation I for L and e ∈ SI ,
‖φ‖I

e = ‖φ′‖I
e . We denote tcons(φ) = {0, 1} ∪ (preds(φ) ∩ CL) ⊆ TconsL and

tcons(T ) = {0, 1} ∪ (preds(T ) ∩ CL) ⊆ TconsL.

3 Translation to Clausal Form

In the propositional case [20], we have proposed some translation of a formula
to an equivalent CNF containing literals of the form either a or a → b or
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(a → b) → b where a is a propositional atom and b is either a propositional atom
or the propositional constant 0. An output equivalent CNF may be of exponen-
tial size with respect to the input formula; we had laid no restrictions on use
of the distributivity law (3) during translation to conjunctive normal form. To
avoid this disadvantage, we have devised translation to CNF via interpolation
using new atoms, which produces an output CNF of linear size at the cost of
being only equisatisfiable to the input formula. A similar approach exploiting
the renaming subformulae technique can be found in [21–25]. A CNF is fur-
ther translated to a finite set of order clauses. An order clause is a finite set of
order literals of the form ε1 � ε2 where εi is either a propositional atom or a
propositional constant, 0, 1, and � ∈ {�,≺}.

We now describe some generalisation of the mentioned translation to the first-
order case. At first, we introduce a notion of quantified atom. Let a ∈ OrdFormL.
a is a quantified atom of L iff a = Qx p(t0, . . . , tτ ) where p(t0, . . . , tτ ) ∈ AtomL,
x ∈ vars(p(t0, . . . , tτ )), either ti = x or x ∈ vars(ti). QAtomL ⊆ OrdFormL
denotes the set of all quantified atoms of L. QAtomQ

L ⊆ QAtomL, Q ∈ {∀,∃},
denotes the set of all quantified atoms of L of the form Qxa. Let εi, 1 ≤ i ≤ m,
be either an expression or a set of expressions or a set of sets of expressions
of L, in general. By qatoms(ε1, . . . , εm) ⊆ QAtomL we denote the set of all
quantified atoms of L occurring in ε1, . . . , εm. We denote qatomsQ(ε1, . . . , εm) =
qatoms(ε1, . . . , εm) ∩ QAtomQ

L , Q ∈ {∀,∃}. Let Qxp(t0, . . . , tτ ) ∈ QAtomL and
p(t′0, . . . , t

′
τ ) ∈ AtomL. We denote

boundindset(Qx p(t0, . . . , tτ )) = {i | i ≤ τ, ti = x} = ∅.

Let I = {i | i ≤ τ, x ∈ vars(ti)} and r1, . . . , rk, ri ≤ τ , k ≤ τ , for all 1 ≤ i < i′ ≤
k, ri < ri′ , be a sequence such that {ri | 1 ≤ i ≤ k} = I. We denote

freetermseq(Qx p(t0, . . . , tτ )) = tr1 , . . . , trk
,

freetermseq(p(t′0, . . . , t
′
τ )) = t′0, . . . , t

′
τ .

We further introduce order clauses in Gödel logic. Let l ∈ OrdFormL. l is
an order literal of L iff l = ε1 � ε2, εi ∈ AtomL ∪ QAtomL, � ∈ {�,≺}. The
set of all order literals of L is designated as OrdLitL ⊆ OrdFormL. An order
clause of L is a finite set of order literals of L; since = is commutative, for all
ε1 � ε2 ∈ OrdLitL, we identify ε1 � ε2 and ε2 � ε1 ∈ OrdLitL with respect
to order clauses. An order clause {l1, . . . , ln} is written in the form l1 ∨ · · · ∨ ln.
The order clause ∅ is called the empty order clause and denoted as �. An order
clause {l} is called a unit order clause and denoted as l; if it does not cause the
ambiguity with the denotation of the single order literal l in given context. We
designate the set of all order clauses of L as OrdClL. Let l, l0, . . . , ln ∈ OrdLitL
and C,C ′ ∈ OrdClL. We define the size of C as |C| =

∑
l∈C |l|. By l∨C we denote

{l}∪C where l ∈ C. Analogously, by l0∨· · ·∨ln∨C we denote {l0}∪· · ·∪{ln}∪C
where, for all i, i′ ≤ n and i = i′, li ∈ C, li = li′ . By C ∨ C ′ we denote C ∪ C ′. C
is a subclause of C ′, in symbols C � C ′, iff C ⊆ C ′. An order clausal theory of
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L is a set of order clauses of L. A unit order clausal theory is a set of unit order
clauses.

Let φ, φ′ ∈ OrdFormL, T, T ′ ⊆ OrdFormL, S, S′ ⊆ OrdClL, I be an inter-
pretation for L, e ∈ SI . Note that I |=e l if and only if either l = ε1 � ε2,
‖ε1 � ε2‖I

e = 1, ‖ε1‖I
e = ‖ε2‖I

e ; or l = ε1 ≺ ε2, ‖ε1 ≺ ε2‖I
e = 1, ‖ε1‖I

e < ‖ε2‖I
e .

C is true in I with respect to e, written as I |=e C, iff there exists l∗ ∈ C such
that I |=e l∗. I is a model of C, in symbols I |= C, iff, for all e ∈ SI , I |=e C.
I is a model of S, in symbols I |= S, iff, for all C ∈ S, I |= C. φ′ | T ′ | C ′ | S′

is a logical consequence of φ | T | C | S, in symbols φ |T |C |S |= φ′ |T ′ |C ′ |S′,
iff, for every model I of φ | T | C | S for L, I |= φ′ |T ′ |C ′ |S′. φ | T | C |
S is satisfiable iff there exists a model of φ | T | C | S for L. Note that both
� and � ∈ S are unsatisfiable. φ | T | C | S is equisatisfiable to φ′ | T ′ | C ′ |
S′ iff φ | T | C | S is satisfiable if and only if φ′ | T ′ | C ′ | S′ is satisfiable.
We denote tcons(S) = {0, 1} ∪ (preds(S) ∩ CL) ⊆ TconsL. Let S ⊆F OrdClL.
We define the size of S as |S| =

∑
C∈S |C|. l is a simplified order literal of

L iff l = ε1 � ε2, {ε1, ε2} ⊆ TconsL, {ε1, ε2} ⊆ QAtomL. The set of all sim-
plified order literals of L is designated as SimOrdLitL ⊆ OrdLitL. We denote
SimOrdClL = {C |C ∈ OrdClL, C ⊆ SimOrdLitL} ⊆ OrdClL. Let f̃0 ∈ FuncL;
f̃0 is a new function symbol. Let I = N × N; I is an infinite countable set of
indices. Let P̃ = {p̃i | i ∈ I} such that P̃ ∩ PredL = ∅; P̃ is an infinite countable
set of new predicate symbols.

From a computational point of view, the worst case time and space com-
plexity will be estimated using the logarithmic cost measurement. Let A be
an algorithm. #OA(In) ≥ 1 denotes the number of all elementary operations
executed by A on an input In.

3.1 Substitutions

We assume the reader to be familiar with the standard notions and notation
of substitutions. We introduce a few definitions and denotations; some of them
are slightly different from the standard ones, but found to be more convenient.
Let X = {xi | 1 ≤ i ≤ n} ⊆ VarL. A substitution ϑ of L is a mapping ϑ :
X −→ TermL. ϑ may be written in the form x1/ϑ(x1), . . . , xn/ϑ(xn). We denote
dom(ϑ) = X ⊆F VarL and range(ϑ) =

⋃
x∈X vars(ϑ(x)) ⊆F VarL. The set of

all substitutions of L is designated as SubstL. Let Qxa ∈ QAtomL. ϑ is applica-
ble to Qxa iff dom(ϑ) ⊇ freevars(Qx a) and x ∈ range(ϑ|freevars(Qx a)). We define
the application of ϑ to Qx a as (Qx a)ϑ = Qx a(ϑ|freevars(Qx a)∪x/x) ∈ QAtomL.
Let ε and ε′ be expressions. ε′ is an instance of ε of L iff there exists ϑ∗ ∈ SubstL
such that ε′ = εϑ∗. ε′ is a variant of ε of L iff there exists a variable renaming ρ∗ ∈
SubstL such that ε′ = ερ∗. Let C ∈ OrdClL and S ⊆ OrdClL. C is an instance |
a variant of S of L iff there exists C∗ ∈ S such that C is an instance | a variant
of C∗ of L. We denote InstL(S) = {C |C is an instance of S of L} ⊆ OrdClL
and VrntL(S) = {C |C is a variant of S of L} ⊆ OrdClL.

Let E be a set of expressions. ϑ is a unifier of L for E iff Eϑ is a singleton
set. Let θ ∈ SubstL. θ is a most general unifier of L for E iff θ is a unifier
of L for E, and for every unifier ϑ of L for E, there exists γ∗ ∈ SubstL such
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that ϑ|freevars(E) = θ|freevars(E) ◦ γ∗. By mguL(E) ⊆ SubstL we denote the set
of all most general unifiers of L for E. Let E = E0, . . . , En, Ei ⊆ Ai, either
Ai = TermL or Ai = AtomL or Ai = QAtomL or Ai = OrdLitL. ϑ is a unifier of
L for E iff, for all i ≤ n, ϑ is a unifier of L for Ei. θ is a most general unifier of L
for E iff θ is a unifier of L for E, and for every unifier ϑ of L for E, there exists
γ∗ ∈ SubstL such that ϑ|freevars(E) = θ|freevars(E) ◦ γ∗. By mguL(E) ⊆ SubstL
we denote the set of all most general unifiers of L for E.

Theorem 1 (Unification Theorem). Let E = E0, . . . , En, either Ei ⊆F
TermL or Ei ⊆F AtomL. If there exists a unifier of L for E, then there exists
θ∗ ∈ mguL(E) such that range(θ∗|vars(E)) ⊆ vars(E).

Proof. By induction on ‖vars(E)‖; a modification of the proof of Theorem 2.3
(Unification Theorem) in [26], Sect. 2.4, pp. 5–6. ��
Theorem 2 (Extended Unification Theorem). Let E = E0, . . . , En, either
Ei ⊆F TermL or Ei ⊆F AtomL or Ei ⊆F QAtomL or Ei ⊆F OrdLitL, and
boundvars(E) ⊆ V ⊆F VarL. If there exists a unifier of L for E, then there
exists θ∗ ∈ mguL(E) such that range(θ∗|freevars(E)) ∩ V = ∅.
Proof. A straightforward consequence of Theorem 1. ��

3.2 A Formal Treatment

Translation of an order formula or theory to clausal form, is based on the fol-
lowing lemma:

Lemma 1. Let nφ, n0 ∈ N, φ ∈ OrdFormL, T ⊆ OrdFormL.

(I) There exist either Jφ = ∅ or Jφ = {(nφ, j) | j ≤ nJφ
}, Jφ ⊆ {(nφ, j) | j ∈ N},

and Sφ ⊆F SimOrdClL∪{p̃j | j∈Jφ} such that
(a) ‖Jφ‖ ≤ 2 · |φ|;
(b) either Jφ = ∅, Sφ = {�} or Jφ = Sφ = ∅ or Jφ = ∅, � ∈ Sφ = ∅;
(c) there exists an interpretation A for L and A |= φ if and only if there

exists an interpretation A′ for L ∪ {p̃j | j ∈ Jφ} and A′ |= Sφ, satisfying
A = A′|L;

(d) |Sφ| ∈ O(|φ|2); the number of all elementary operations of the translation
of φ to Sφ, is in O(|φ|2); the time and space complexity of the translation
of φ to Sφ, is in O(|φ|2 · (log(1 + nφ) + log |φ|));

(e) if Sφ = ∅, {�}, then Jφ = ∅, for all C ∈ Sφ, ∅ = preds(C) ∩ P̃ ⊆ {p̃j | j ∈
Jφ};

(f) for all a ∈ qatoms(Sφ), there exists j∗ ∈ Jφ and preds(a) = {p̃j∗};
(g) for all j ∈ Jφ, there exists a sequence x̄ of variables of L and p̃j(x̄) ∈

atoms(Sφ) satisfying, for all a ∈ atoms(Sφ) and preds(a) = {p̃j}, a =
p̃j(x̄); if there exists a∗ ∈ qatoms(Sφ) and preds(a∗) = {p̃j}, then there
exists Qx p̃j(x̄) ∈ qatoms(Sφ) satisfying, for all a ∈ qatoms(Sφ) and
preds(a) = {p̃j}, a = Qx p̃j(x̄);
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(h) tcons(Sφ) ⊆ tcons(φ).
(II) There exist JT ⊆ {(i, j) | i ≥ n0} and ST ⊆ SimOrdClL∪{p̃j | j∈JT } such that

(a) either JT = ∅, ST = {�} or JT = ST = ∅ or JT = ∅, � ∈ ST = ∅;
(b) there exists an interpretation A for L and A |= T if and only if there

exists an interpretation A′ for L ∪ {p̃j | j ∈ JT } and A′ |= ST , satisfying
A = A′|L;

(c) if T ⊆F OrdFormL, then JT ⊆F {(i, j) | i ≥ n0}, ‖JT ‖ ≤ 2 · |T |, ST ⊆F
SimOrdClL∪{p̃j | j∈JT }, |ST | ∈ O(|T |2); the number of all elementary
operations of the translation of T to ST , is in O(|T |2); the time and space
complexity of the translation of T to ST , is in O(|T |2 · log(1+n0 + |T |));

(d) if ST = ∅, {�}, then JT = ∅, for all C ∈ ST , ∅ = preds(C)∩ P̃ ⊆ {p̃j | j ∈
JT };

(e) for all a ∈ qatoms(ST ), there exists j∗ ∈ JT and preds(a) = {p̃j∗};
(f) for all j ∈ JT , there exists a sequence x̄ of variables of L and p̃j(x̄) ∈

atoms(ST ) satisfying, for all a ∈ atoms(ST ) and preds(a) = {p̃j}, a =
p̃j(x̄); if there exists a∗ ∈ qatoms(ST ) and preds(a∗) = {p̃j}, then there
exists Qx p̃j(x̄) ∈ qatoms(ST ) satisfying, for all a ∈ qatoms(ST ) and
preds(a) = {p̃j}, a = Qx p̃j(x̄);

(g) tcons(ST ) ⊆ tcons(T ).

Proof. Technical, using interpolation. It is straightforward to prove the following
statements:

Let nθ ∈ N and θ ∈ OrdFormL. There exists θ′ ∈ OrdFormL such that

(a) θ′ ≡ θ;
(b) |θ′| ≤ 2 · |θ|; θ′ can be built up from θ via a postorder traversal of

θ with #O(θ) ∈ O(|θ|) and the time, space complexity in O(|θ| ·
(log(1 + nθ) + log |θ|));

(c) θ′ does not contain ¬ and Δ;
(d) θ′ ∈ TconsL; or for every subformula of θ′ of the form ε1 � ε2,

� ∈ {∧,∨,↔}, εi = 0, 1, {ε1, ε2} ⊆ TconsL; for every subformula
of θ′ of the form ε1 → ε2, ε1 = 0, 1, ε2 = 1, {ε1, ε2} ⊆ TconsL;
for every subformula of θ′ of the form ε1 � ε2, {ε1, ε2} ⊆ TconsL;
for every subformula of θ′ of the form ε1 ≺ ε2, ε1 = 1, ε2 = 0,
{ε1, ε2} ⊆ TconsL; for every subformula of θ′ of the form Qxε1,
Q ∈ {∀,∃}, ε1 ∈ TconsL;

(e) tcons(θ′) ⊆ tcons(θ).

(14)

The proof is by induction on the structure of θ.

Let nθ ∈ N, θ ∈ OrdFormL−{0, 1}, (14c, d) hold for θ; x̄ be a sequence
of variables, vars(θ) ⊆ vars(x̄) ⊆ VarL; i = (nθ, ji) ∈ {(nθ, j) | j ∈ N},
p̃i ∈ P̃, ar(p̃i) = |x̄|. There exist J = {(nθ, j) | ji + 1 ≤ j ≤ nJ} ⊆
{(nθ, j) | j ∈ N}, ji ≤ nJ , i ∈ J , and S ⊆F SimOrdClL∪{p̃i}∪{p̃j | j∈J}
such that

(15)
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(a) ‖J‖ ≤ |θ| − 1;
(b) there exists an interpretation A for L∪{p̃i} and A |= p̃i(x̄) ↔ θ ∈

OrdFormL∪{p̃i} if and only if there exists an interpretation A′ for
L ∪ {p̃i} ∪ {p̃j | j ∈ J} and A′ |= S, satisfying A = A′|L∪{p̃i};

(c) |S| ≤ 27 · |θ| · (1 + |x̄|), S can be built up from θ and f̃0(x̄) via a
preorder traversal of θ with #O(θ, f̃0(x̄)) ∈ O(|θ| · (1 + |x̄|));

(d) for all C ∈ S, ∅ = preds(C) ∩ P̃ ⊆ {p̃i} ∪ {p̃j | j ∈ J}, p̃i(x̄) �
1, p̃i(x̄) ≺ 1 ∈ S;

(e) for all a ∈ qatoms(S), there exists j∗ ∈ J and preds(a) = {p̃j∗};
(f) for all j ∈ {i}∪J , p̃j(x̄) ∈ atoms(S) satisfying, for all a ∈ atoms(S)

and preds(a) = {p̃j}, a = p̃j(x̄); p̃i ∈ preds(qatoms(S)), for all
j ∈ J , if there exists a∗ ∈ qatoms(S) and preds(a∗) = {p̃j}, then
there exists Qx p̃j(x̄) ∈ qatoms(S) satisfying, for all a ∈ qatoms(S)
and preds(a) = {p̃j}, a = Qx p̃j(x̄);

(g) tcons(S) = tcons(θ).

The proof is by induction on the structure of θ using the interpolation rules in
Tables 1 and 2.

(I) By (14) for nφ, φ, there exists φ′ ∈ OrdFormL such that (14a–e) hold for
nφ, φ, φ′. We distinguish three cases for φ′. Case 1: φ′ ∈ TconsL − {1}. We put
Jφ = ∅ ⊆ {(nφ, j) | j ∈ N} and Sφ = {�} ⊆F SimOrdClL. Case 2: φ′ = 1. We
put Jφ = ∅ ⊆ {(nφ, j) | j ∈ N} and Sφ = ∅ ⊆F SimOrdClL. Case 3: φ′ ∈ TconsL.
We put x̄ = varseq(φ′), ji = 0, i = (nφ, ji), ar(p̃i) = |x̄|. We get by (15) for
nφ, φ′, x̄, i, p̃i that there exist J = {(nφ, j) | 1 ≤ j ≤ nJ} ⊆ {(nφ, j) | j ∈ N},
ji ≤ nJ , i ∈ J , S ⊆F SimOrdClL∪{p̃i}∪{p̃j | j∈J}, and (15a–g) hold for φ′, x̄, p̃i, J ,
S. We put nJφ

= nJ , Jφ = {(nφ, j) | j ≤ nJφ
} ⊆ {(nφ, j) | j ∈ N}, Sφ = {p̃i(x̄) �

1} ∪ S ⊆F SimOrdClL∪{p̃j | j∈Jφ}. (II) straightforwardly follows from (I). The
lemma is proved. ��

The described translation produces order clausal theories in some restric-
tive form, which will be utilised in inference using our order hyperresolution
calculus to get shorter deductions in average case, cf. Sect. 5. Let P ⊆ P̃ and
S ⊆ OrdClL∪P . S is admissible iff

(a) for all a ∈ qatoms(S), preds(a) ⊆ P ;
(b) for all p̃ ∈ P , there exists a sequence x̄ of variables of L and p̃(x̄) ∈ atoms(S)

satisfying, for all a ∈ atoms(S) and preds(a) = {p̃}, a is an instance of p̃(x̄) of
L ∪ P ; if there exists a∗ ∈ qatoms(S) and preds(a∗) = {p̃}, then there exists
Qx p̃(x̄) ∈ qatoms(S) satisfying, for all a ∈ qatoms(S) and preds(a) = {p̃},
a is an instance of Qx p̃(x̄) of L ∪ P .

(a) and (b) imply that for all Qx a,Q′x′ a′ ∈ qatoms(S), if preds(a) = preds(a′),
then Q = Q′, x = x′, boundindset(Qx a) = boundindset(Q′x′ a′).

Theorem 3. Let n0 ∈ N, φ ∈ OrdFormL, T ⊆ OrdFormL. There exist Jφ
T ⊆

{(i, j) | i ≥ n0} and Sφ
T ⊆ SimOrdClL∪{p̃j | j∈Jφ

T } such that
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Table 1. Binary interpolation rules for ∧, ∨, →, ↔, �, ≺.

Case

θ = θ1 ∧ θ2

p̃ (x̄) ↔ θ1 ∧ θ2⎧⎨
⎩

p̃ 1 (x̄) ≺ p̃ 2 (x̄) ∨ p̃ 1 (x̄) � p̃ 2 (x̄) ∨ p̃ (x̄) � p̃ 2 (x̄),

p̃ 2 (x̄) ≺ p̃ 1 (x̄) ∨ p̃ (x̄) � p̃ 1 (x̄),

p̃ 1 (x̄) ↔ θ1, p̃ 2 (x̄) ↔ θ2

⎫⎬
⎭

(16)

|Consequent| = 15 + 10 · |x̄| + |p̃ 1 (x̄) ↔ θ1| + |p̃ 2 (x̄) ↔ θ2| ≤ 27 · (1 + |x̄|) + |p̃ 1 (x̄) ↔ θ1| + |p̃ 2 (x̄) ↔ θ2|

θ = θ1 ∨ θ2

p̃ (x̄) ↔ (θ1 ∨ θ2)⎧⎨
⎩

p̃ 1 (x̄) ≺ p̃ 2 (x̄) ∨ p̃ 1 (x̄) � p̃ 2 (x̄) ∨ p̃ (x̄) � p̃ 1 (x̄),

p̃ 2 (x̄) ≺ p̃ 1 (x̄) ∨ p̃ (x̄) � p̃ 2 (x̄),

p̃ 1 (x̄) ↔ θ1, p̃ 2 (x̄) ↔ θ2

⎫⎬
⎭

(17)

|Consequent| = 15 + 10 · |x̄| + |p̃ 1 (x̄) ↔ θ1| + |p̃ 2 (x̄) ↔ θ2| ≤ 27 · (1 + |x̄|) + |p̃ 1 (x̄) ↔ θ1| + |p̃ 2 (x̄) ↔ θ2|

θ = θ1 → θ2, θ2 	= 0

p̃ (x̄) ↔ (θ1 → θ2){
p̃ 1 (x̄) ≺ p̃ 2 (x̄) ∨ p̃ 1 (x̄) � p̃ 2 (x̄) ∨ p̃ (x̄) � p̃ 2 (x̄),

p̃ 2 (x̄) ≺ p̃ 1 (x̄) ∨ p̃ (x̄) � 1 , p̃ 1 (x̄) ↔ θ1, p̃ 2 (x̄) ↔ θ2

} (18)

|Consequent| = 15 + 9 · |x̄| + |p̃ 1 (x̄) ↔ θ1| + |p̃ 2 (x̄) ↔ θ2| ≤ 27 · (1 + |x̄|) + |p̃ 1 (x̄) ↔ θ1| + |p̃ 2 (x̄) ↔ θ2|

θ = θ1 ↔ θ2

p̃ (x̄) ↔ (θ1 ↔ θ2)⎧⎪⎪⎨
⎪⎪⎩

p̃ 1 (x̄) ≺ p̃ 2 (x̄) ∨ p̃ 1 (x̄) � p̃ 2 (x̄) ∨ p̃ (x̄) � p̃ 2 (x̄),

p̃ 2 (x̄) ≺ p̃ 1 (x̄) ∨ p̃ 2 (x̄) � p̃ 1 (x̄) ∨ p̃ (x̄) � p̃ 1 (x̄),

p̃ 1 (x̄) ≺ p̃ 2 (x̄) ∨ p̃ 2 (x̄) ≺ p̃ 1 (x̄) ∨ p̃ (x̄) � 1 ,

p̃ 1 (x̄) ↔ θ1, p̃ 2 (x̄) ↔ θ2

⎫⎪⎪⎬
⎪⎪⎭

(19)

|Consequent| = 27 + 17 · |x̄| + |p̃ 1 (x̄) ↔ θ1| + |p̃ 2 (x̄) ↔ θ2| ≤ 27 · (1 + |x̄|) + |p̃ 1 (x̄) ↔ θ1| + |p̃ 2 (x̄) ↔ θ2|

θ = θ1 � θ2, θi 	= 0 , 1

p̃ (x̄) ↔ (θ1 � θ2){
p̃ 1 (x̄) � p̃ 2 (x̄) ∨ p̃ (x̄) � 0 ,

p̃ 1 (x̄) ≺ p̃ 2 (x̄) ∨ p̃ 2 (x̄) ≺ p̃ 1 (x̄) ∨ p̃ (x̄) � 1 , p̃ 1 (x̄) ↔ θ1, p̃ 2 (x̄) ↔ θ2

} (20)

|Consequent| = 15 + 8 · |x̄| + |p̃ 1 (x̄) ↔ θ1| + |p̃ 2 (x̄) ↔ θ2| ≤ 27 · (1 + |x̄|) + |p̃ 1 (x̄) ↔ θ1| + |p̃ 2 (x̄) ↔ θ2|

θ = θ1 ≺ θ2, θ1 	= 0 , θ2 	= 1

p̃ (x̄) ↔ (θ1 ≺ θ2){
p̃ 1 (x̄) ≺ p̃ 2 (x̄) ∨ p̃ (x̄) � 0 ,

p̃ 2 (x̄) ≺ p̃ 1 (x̄) ∨ p̃ 2 (x̄) � p̃ 1 (x̄) ∨ p̃ (x̄) � 1 , p̃ 1 (x̄) ↔ θ1, p̃ 2 (x̄) ↔ θ2

} (21)

|Consequent| = 15 + 8 · |x̄| + |p̃ 1 (x̄) ↔ θ1| + |p̃ 2 (x̄) ↔ θ2| ≤ 27 · (1 + |x̄|) + |p̃ 1 (x̄) ↔ θ1| + |p̃ 2 (x̄) ↔ θ2|
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Table 2. Unary interpolation rules for →, �, ≺, ∀, ∃.

Case

θ = θ1 → 0

p̃ (x̄) ↔ (θ1 → 0)

{p̃ 1 (x̄) � 0 ∨ p̃ (x̄) � 0 , 0 ≺ p̃ 1 (x̄) ∨ p̃ (x̄) � 1 , p̃ 1 (x̄) ↔ θ1} (22)

|Consequent| = 12 + 4 · |x̄| + |p̃ 1 (x̄) ↔ θ1| ≤ 27 · (1 + |x̄|) + |p̃ 1 (x̄) ↔ θ1|

θ = θ1 � 0

p̃ (x̄) ↔ (θ1 � 0)

{p̃ 1 (x̄) � 0 ∨ p̃ (x̄) � 0 , 0 ≺ p̃ 1 (x̄) ∨ p̃ (x̄) � 1 , p̃ 1 (x̄) ↔ θ1} (23)

|Consequent| = 12 + 4 · |x̄| + |p̃ 1 (x̄) ↔ θ1| ≤ 27 · (1 + |x̄|) + |p̃ 1 (x̄) ↔ θ1|

θ = θ1 � 1

p̃ (x̄) ↔ (θ1 � 1)

{p̃ 1 (x̄) � 1 ∨ p̃ (x̄) � 0 , p̃ 1 (x̄) ≺ 1 ∨ p̃ (x̄) � 1 , p̃ 1 (x̄) ↔ θ1} (24)

|Consequent| = 12 + 4 · |x̄| + |p̃ 1 (x̄) ↔ θ1| ≤ 27 · (1 + |x̄|) + |p̃ 1 (x̄) ↔ θ1|

θ = 0 ≺ θ1

p̃ (x̄) ↔ (0 ≺ θ1)

{0 ≺ p̃ 1 (x̄) ∨ p̃ (x̄) � 0 , p̃ 1 (x̄) � 0 ∨ p̃ (x̄) � 1 , p̃ 1 (x̄) ↔ θ1} (25)

|Consequent| = 12 + 4 · |x̄| + |p̃ 1 (x̄) ↔ θ1| ≤ 27 · (1 + |x̄|) + |p̃ 1 (x̄) ↔ θ1|

θ = θ1 ≺ 1

p̃ (x̄) ↔ (θ1 ≺ 1)

{p̃ 1 (x̄) ≺ 1 ∨ p̃ (x̄) � 0 , p̃ 1 (x̄) � 1 ∨ p̃ (x̄) � 1 , p̃ 1 (x̄) ↔ θ1} (26)

|Consequent| = 12 + 4 · |x̄| + |p̃ 1 (x̄) ↔ θ1| ≤ 27 · (1 + |x̄|) + |p̃ 1 (x̄) ↔ θ1|

θ = ∀x θ1

p̃ (x̄) ↔ ∀x θ1

{p̃ (x̄) � ∀x p̃ 1 (x̄), p̃ 1 (x̄) ↔ θ1} (27)

|Consequent| = 5 + 2 · |x̄| + |p̃ 1 (x̄) ↔ θ1| ≤ 27 · (1 + |x̄|) + |p̃ 1 (x̄) ↔ θ1|

θ = ∃x θ1

p̃ (x̄) ↔ ∃x θ1

{p̃ (x̄) � ∃x p̃ 1 (x̄), p̃ 1 (x̄) ↔ θ1} (28)

|Consequent| = 5 + 2 · |x̄| + |p̃ 1 (x̄) ↔ θ1| ≤ 27 · (1 + |x̄|) + |p̃ 1 (x̄) ↔ θ1|
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(i) there exists an interpretation A for L and A |= T , A  |= φ if and only
if there exists an interpretation A′ for L ∪ {p̃j | j ∈ Jφ

T } and A′ |= Sφ
T ,

satisfying A = A′|L;
(ii) if T ⊆F OrdFormL, then Jφ

T ⊆F {(i, j) | i ≥ n0}, ‖Jφ
T ‖ ∈ O(|T | + |φ|),

Sφ
T ⊆F SimOrdClL∪{p̃j | j∈Jφ

T }, |Sφ
T | ∈ O(|T |2 + |φ|2); the number of all

elementary operations of the translation of T and φ to Sφ
T , is in O(|T |2 +

|φ|2); the time and space complexity of the translation of T and φ to Sφ
T , is

in O(|T |2 · log(1 + n0 + |T |) + |φ|2 · (log(1 + n0) + log |φ|));
(iii) Sφ

T is admissible;
(iv) tcons(Sφ

T ) ⊆ tcons(φ) ∪ tcons(T ).

Proof. Similar to that of Lemma 1(I). We get by Lemma 1(II) for n0 + 1, T
that there exist JT ⊆ {(i, j) | i ≥ n0 + 1}, ST ⊆ SimOrdClL∪{p̃j | j∈JT }, and
Lemma 1(II a–g) hold for n0 + 1, T , JT , ST . By (14) for n0, φ, there exists
φ′ ∈ OrdFormL such that (14a–e) hold for n0, φ, φ′. We distinguish three cases
for φ′. Case 1: φ′ ∈ TconsL − {1}. We put Jφ

T = JT ⊆ {(i, j) | i ≥ n0 + 1} ⊆
{(i, j) | i ≥ n0} and Sφ

T = ST ⊆ SimOrdClL∪{p̃j | j∈Jφ
T }. Case 2: φ′ = 1. We put

Jφ
T = ∅ ⊆ {(i, j) | i ≥ n0} and Sφ

T = {�} ⊆ SimOrdClL. Case 3: φ′ ∈ TconsL.
We put x̄ = varseq(φ′), ji = 0, i = (n0, ji), ar(p̃i) = |x̄|. We get by (15) for
n0, ∀x̄ φ′, x̄, i, p̃i that there exist J = {(n0, j) | 1 ≤ j ≤ nJ} ⊆ {(n0, j) | j ∈ N},
ji ≤ nJ , i ∈ J , S ⊆F SimOrdClL∪{p̃i}∪{p̃j | j∈J}, and (15a–g) hold for ∀x̄ φ′, x̄,
p̃i, J , S. We put Jφ

T = JT ∪ {i} ∪ J ⊆ {(i, j) | i ≥ n0} and Sφ
T = ST ∪ {p̃i(x̄) ≺

1} ∪ S ⊆ SimOrdClL∪{p̃j | j∈Jφ
T }. The theorem is proved. ��

Corollary 1. Let n0 ∈ N, φ ∈ OrdFormL, T ⊆ OrdFormL. There exist Jφ
T ⊆

{(i, j) | i ≥ n0} and Sφ
T ⊆ SimOrdClL∪{p̃j | j∈Jφ

T } such that

(i) T |= φ if and only if Sφ
T is unsatisfiable;

(ii) if T ⊆F OrdFormL, then Jφ
T ⊆F {(i, j) | i ≥ n0}, ‖Jφ

T ‖ ∈ O(|T | + |φ|),
Sφ

T ⊆F SimOrdClL∪{p̃j | j∈Jφ
T }, |Sφ

T | ∈ O(|T |2 + |φ|2); the number of all

elementary operations of the translation of T and φ to Sφ
T , is in O(|T |2 +

|φ|2); the time and space complexity of the translation of T and φ to Sφ
T , is

in O(|T |2 · log(1 + n0 + |T |) + |φ|2 · (log(1 + n0) + log |φ|));
(iii) Sφ

T is admissible;
(iv) tcons(Sφ

T ) ⊆ tcons(φ) ∪ tcons(T ).

Proof. Let T |= φ. Then, for every interpretation A for L, A  |= T or A |= φ;
by Theorem 3(i), there does not exist an interpretation A′ for L ∪ {p̃j | j ∈ Jφ

T }
and A′ |= Sφ

T ; Sφ
T is unsatisfiable.

Let Sφ
T is unsatisfiable. Then, for every interpretation A′ for L∪{p̃j | j ∈ Jφ

T },
A′  |= Sφ

T ; by Theorem 3(i), there does not exist an interpretation A for L and
A |= T , A  |= φ; for every interpretation A for L, A  |= T or A |= φ; T |= φ;
(i) holds.



Expanding Gödel Logic 255

(ii–iv) are the same as Theorem 3(ii–iv); (ii–iv) hold. The corollary is
proved. ��

4 Hyperresolution over Order Clauses

In this section, we propose an order hyperresolution calculus with truth con-
stants operating over order clausal theories, and prove its refutational soundness,
completeness.

4.1 Order Hyperresolution Rules

At first, we introduce some basic notions and notation concerning chains of order
literals. A chain Ξ of L is a sequence Ξ = ε0�0υ0, . . . , εn�nυn, εi�iυi ∈ OrdLitL,
such that for all i < n, υi = εi+1. ε0 is the beginning element of Ξ and υn the
ending element of Ξ. ε0 Ξ υn denotes Ξ together with its respective beginning
and ending element. Let Ξ = ε0 �0 υ0, . . . , εn �n υn be a chain of L. Ξ is an
equality chain of L iff, for all i ≤ n, �i =�. Ξ is an increasing chain of L iff there
exists i∗ ≤ n such that �i∗ =≺. Ξ is a contradiction of L iff Ξ is an increasing
chain of L of the form ε0 Ξ 0 or 1Ξ υn or ε0 Ξ ε0. Let S ⊆ OrdClL be unit and
Ξ = ε0 �0 υ0, . . . , εn �n υn be a chain | an equality chain | an increasing chain |
a contradiction of L. Ξ is a chain | an equality chain | an increasing chain | a
contradiction of S iff, for all i ≤ n, εi �i υi ∈ S.

Let W̃ = {w̃i | i ∈ I} such that W̃ ∩ (FuncL ∪ {f̃0}) = ∅; W̃ is an
infinite countable set of new function symbols. Let L contain a constant
(nullary function) symbol. Let P ⊆ P̃ and S ⊆ OrdClL∪P . We denote
GOrdClL = {C |C ∈ OrdClL is closed } ⊆ OrdClL, GInstL(S) = {C |C ∈
GOrdClL is an instance of S of L} ⊆ GOrdClL, ordtcons(S) = {0 ≺ 1}∪{0 ≺
c̄ | c̄ ∈ tcons(S) ∩ CL} ∪ {c̄ ≺ 1 | c̄ ∈ tcons(S) ∩ CL} ∪ {c̄1 ≺ c̄2 | c̄1, c̄2 ∈
tcons(S) ∩ CL, c1 < c2} ⊆ GOrdClL. A basic order hyperresolution calculus
is defined as follows. The first rule is a central order hyperresolution one with
obvious intuition.

(Basic order hyperresolution rule) (29)
l0 ∨ C0, . . . , ln ∨ Cn ∈ Sκ−1

n∨
i=0

Ci ∈ Sκ

;

l0, . . . , ln is a contradiction of Lκ−1.

We say that
∨n

i=0 Ci is a basic order hyperresolvent of l0 ∨ C0, . . . , ln ∨ Cn. The
second and third rules are auxiliary ones that order derived atoms in both the
cases qatoms(S) = ∅ and qatoms(S) = ∅, which is exploited in the proof of the
completeness of the calculus, Theorem 4.

(Basic order trichotomy rule) (30)

a, b ∈ atoms(Sκ−1), a ∈ CL, b ∈ TconsL, qatoms(S) = ∅
a ≺ b ∨ a � b ∨ b ≺ a ∈ Sκ.



256 D. Guller

(Basic order trichotomy rule) (31)
a, b ∈ atoms(Sκ−1) − {0, 1}, {a, b} ⊆ TconsL, qatoms(S) = ∅

a ≺ b ∨ a � b ∨ b ≺ a ∈ Sκ.

a ≺ b ∨ a � b ∨ b ≺ a is a basic order trichotomy resolvent of a and b. The next
two rules order a quantified atom and its ground instances.

(Basic order ∀-quantification rule) (32)

∀x a ∈ qatoms∀(Sκ−1)
∀x a ≺ aγ ∨ ∀x a � aγ ∈ Sκ

;

t ∈ GTermLκ−1 , γ = x/t ∈ SubstLκ−1 , dom(γ) = {x} = vars(a).

∀x a ≺ aγ ∨ ∀x a � aγ is a basic order ∀-quantification resolvent of ∀x a.

(Basic order ∃-quantification rule) (33)

∃x a ∈ qatoms∃(Sκ−1)
aγ ≺ ∃x a ∨ aγ � ∃x a ∈ Sκ

;

t ∈ GTermLκ−1 , γ = x/t ∈ SubstLκ−1 , dom(γ) = {x} = vars(a).

aγ ≺ ∃x a ∨ aγ � ∃x a is a basic order ∃-quantification resolvent of ∃x a. The
last two rules introduce a witness with respect to infimum | supremum, as a
ground term with a new function symbol, between a derived quantified atom
and an atom | a quantified atom. They also ensure a total order over a derived
quantified atom and atoms | quantified atoms together with Rules (32) and (33),
which is exploited in the proof of the completeness.

(Basic order ∀-witnessing rule) (34)

∀x a ∈ qatoms∀(Sκ−1), b ∈ atoms(Sκ−1) ∪ qatoms(Sκ−1)
aγ ≺ b ∨ b � ∀x a ∨ b ≺ ∀x a ∈ Sκ

;

w̃ ∈ W̃ − FuncLκ−1 , ar(w̃) = |freetermseq(∀x a), freetermseq(b)|,
γ = x/w̃(freetermseq(∀x a), freetermseq(b)) ∈ SubstLκ

, dom(γ) = {x} = vars(a).

aγ ≺ b ∨ b � ∀x a ∨ b ≺ ∀x a is a basic order ∀-witnessing resolvent of ∀x a
and b.

(Basic order ∃-witnessing rule) (35)

∃x a ∈ qatoms∃(Sκ−1), b ∈ atoms(Sκ−1) ∪ qatoms(Sκ−1)
b ≺ aγ ∨ ∃x a � b ∨ ∃x a ≺ b ∈ Sκ

;

w̃ ∈ W̃ − FuncLκ−1 , ar(w̃) = |freetermseq(∃x a), freetermseq(b)|,
γ = x/w̃(freetermseq(∃x a), freetermseq(b)) ∈ SubstLκ

, dom(γ) = {x} = vars(a).

b ≺ aγ ∨ ∃x a � b ∨ ∃x a ≺ b is a basic order ∃-witnessing resolvent of ∃x a
and b.
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The basic order hyperresolution calculus can be generalised to an order hyper-
resolution one. Intuition behind rules is similar to that in the basic case.

(Order hyperresolution rule) (36)
k0∨

j=0

ε0j �0j υ0
j ∨

m0∨
j=1

l0j , . . . ,

kn∨
j=0

εn
j �n

j υn
j ∨

mn∨
j=1

lnj ∈ SVr
κ−1

( n∨
i=0

mi∨
j=1

lij

)
θ ∈ Sκ

;

for all i < i′ ≤ n,

freevars(
∨ki

j=0 εi
j �i

j υi
j ∨ ∨mi

j=1 lij) ∩ freevars(
∨ki′

j=0 εi′
j �i′

j υi′
j ∨ ∨mi′

j=1 li
′

j ) = ∅,

θ ∈ mguLκ−1

( ∨k0
j=0 ε0j �0j υ0

j , l01, . . . , l
0
m0

, . . . ,
∨kn

j=0 εn
j �n

j υn
j , ln1 , . . . , lnmn

,

{υ0
0 , ε

1
0}, . . . , {υn−1

0 , εn
0}, {a, b}

)
,

dom(θ) = freevars
({εi

j �i
j υi

j | j ≤ ki, i ≤ n}, {lij | 1 ≤ j ≤ mi, i ≤ n}),
a = ε00, b = 1 or a = υn

0 , b = 0 or a = ε00, b = υn
0 ,

there exists i∗≤n such that �i∗
0 =≺ .

( ∨n
i=0

∨mi

j=1 lij
)
θ is an order hyperresolvent of

∨k0
j=0 ε0j �0j υ0

j ∨ ∨m0
j=1 l0j , . . . ,

∨kn

j=0

εn
j �n

j υn
j ∨ ∨mn

j=1 lnj .

(Order trichotomy rule) (37)

a, b ∈ atoms(Sκ−1), a ∈ CL, b ∈ TconsL, qatoms(S) = ∅
a ≺ b ∨ a � b ∨ b ≺ a ∈ Sκ

.

(Order trichotomy rule) (38)

a, b ∈ atoms(SVr
κ−1) − {0, 1}, {a, b} ⊆ TconsL, qatoms(S) = ∅

a ≺ b ∨ a � b ∨ b ≺ a ∈ Sκ
;

vars(a) ∩ vars(b) = ∅.

a ≺ b ∨ a � b ∨ b ≺ a is an order trichotomy resolvent of a and b.

(Order ∀-quantification rule) (39)

∀x a ∈ qatoms∀(Sκ−1)
∀x a ≺ a ∨ ∀x a � a ∈ Sκ

.

∀x a ≺ a ∨ ∀x a � a is an order ∀-quantification resolvent of ∀x a.

(Order ∃-quantification rule) (40)

∃x a ∈ qatoms∃(Sκ−1)
a ≺ ∃x a ∨ a � ∃x a ∈ Sκ

.
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a ≺ ∃x a ∨ a � ∃x a is an order ∃-quantification resolvent of ∃x a.

(Order ∀-witnessing rule) (41)

∀x a ∈ qatoms∀(SVr
κ−1), b ∈ atoms(SVr

κ−1) ∪ qatoms(SVr
κ−1)

aγ ≺ b ∨ b � ∀x a ∨ b ≺ ∀x a ∈ Sκ
;

freevars(∀x a) ∩ freevars(b) = ∅,

w̃ ∈ W̃ − FuncLκ−1 , ar(w̃) = |freetermseq(∀x a), freetermseq(b)|,
γ = x/w̃(freetermseq(∀x a), freetermseq(b)) ∪ id |vars(a)−{x} ∈ SubstLκ

,
dom(γ) = {x} ∪ (vars(a) − {x}) = vars(a).

aγ ≺ b∨ b � ∀x a∨ b ≺ ∀x a is an order ∀-witnessing resolvent of ∀x a and b.

(Order ∃-witnessing rule) (42)

∃x a ∈ qatoms∃(SVr
κ−1), b ∈ atoms(SVr

κ−1) ∪ qatoms(SVr
κ−1)

b ≺ aγ ∨ ∃x a � b ∨ ∃x a ≺ b ∈ Sκ
;

freevars(∃x a) ∩ freevars(b) = ∅,

w̃ ∈ W̃ − FuncLκ−1 , ar(w̃) = |freetermseq(∃x a), freetermseq(b)|,
γ = x/w̃(freetermseq(∃x a), freetermseq(b)) ∪ id |vars(a)−{x} ∈ SubstLκ

,
dom(γ) = {x} ∪ (vars(a) − {x}) = vars(a).

b ≺ aγ ∨ ∃x a � b ∨ ∃x a ≺ b is an order ∃-witnessing resolvent of ∃x a and b.
Let L0 = L ∪ P , a reduct of L ∪ W̃ ∪ P , and S0 = ∅ ⊆ GOrdClL0 | OrdClL0 .

Let D = C1, . . . , Cn, Cκ ∈ GOrdClL∪W̃∪P | OrdClL∪W̃∪P , n ≥ 1. D is a
deduction of Cn from S by basic order hyperresolution iff, for all 1 ≤ κ ≤ n,
Cκ ∈ ordtcons(S) ∪ GInstLκ−1(S), or there exist 1 ≤ j∗

k ≤ κ − 1, k = 1, . . . , m,
such that Cκ is a basic order resolvent of Cj∗

1
, . . . , Cj∗

m
∈ Sκ−1 using Rule

(29)–(35) with respect to Lκ−1 and Sκ−1; D is a deduction of Cn from S by
order hyperresolution iff, for all 1 ≤ κ ≤ n, Cκ ∈ ordtcons(S) ∪ S, or there
exist 1 ≤ j∗

k ≤ κ − 1, k = 1, . . . ,m, such that Cκ is an order resolvent of
C ′

j∗
1
, . . . , C ′

j∗
m

∈ SVr
κ−1 using Rule (36)–(42) with respect to Lκ−1 and Sκ−1 where

C ′
j∗
k

is a variant of Cj∗
k

∈ Sκ−1 of Lκ−1; Lκ and Sκ are defined by recursion on
1 ≤ κ ≤ n as follows:

Lκ =

{Lκ−1 ∪ {w̃} in case of Rule (34), (35) | (41), (42),
Lκ−1 else,

a reduct of L∪W̃∪P ;

Sκ = Sκ−1 ∪ {Cκ} ⊆ GOrdClLκ | OrdClLκ ,

SVr
κ = VrntLκ(Sκ) ⊆ OrdClLκ .

D is a refutation of S iff Cn = �. We denote

cloBH(S) = {C | there exists a deduction of Cfrom S

by basic order hyperresolution } ⊆ GOrdClL∪W̃∪P ,

cloH(S) = {C | there exists a deduction of Cfrom S

by order hyperresolution } ⊆ OrdClL∪W̃∪P .
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4.2 Refutational Soundness and Completeness

We are in position to prove the refutational soundness and completeness of the
order hyperresolution calculus. At first, we list some auxiliary lemmata.

Lemma 2 (Lifting Lemma). Let L contain a constant symbol. Let P ⊆ P̃

and S ⊆ OrdClL∪P . Let C ∈ cloBH(S). There exists C∗ ∈ cloH(S) such that C
is an instance of C∗ of L ∪ W̃ ∪ P .

Proof. Technical, analogous to the standard one. ��
Lemma 3 (Reduction Lemma). Let L contain a constant symbol. Let P ⊆ P̃

and S ⊆ OrdClL∪P . Let {∨ki

j=0 εi
j �i

j υi
j ∨ Ci | i ≤ n} ⊆ cloBH(S) such that for

all S ∈ Sel({{j | j ≤ ki}i | i ≤ n}), there exists a contradiction of {εi
S(i) �i

S(i)

υi
S(i) | i ≤ n} ⊆ GOrdClL∪W̃∪P . There exists ∅ = I∗ ⊆ {i | i ≤ n} such that∨
i∈I∗ Ci ∈ cloBH(S).

Proof. Technical, analogous to the one of Proposition 2, [27]. ��
Lemma 4 (Unit Lemma). Let L contain a constant symbol. Let P ⊆ P̃ and
S ⊆ OrdClL∪P . Let � ∈ cloBH(S) = {∨kι

j=0 ει
j �ι

j υι
j | ι < γ}, γ ≤ ω. There exists

S∗ ∈ Sel({{j | j ≤ kι}ι | ι < γ}) such that there does not exist a contradiction of
{ει

S∗(ι) �ι
S∗(ι) υι

S∗(ι) | ι < γ} ⊆ GOrdClL∪W̃∪P .

Proof. Technical, a straightforward consequence of König’s Lemma and
Lemma 3. ��

Let {0, 1} ⊆ X ⊆ [0, 1]. X is admissible with respect to suprema and infima
iff, for all ∅ = Y1, Y2 ⊆ X and

∨∨∨
Y1 =

∧∧∧
Y2,

∨∨∨
Y1 ∈ Y1,

∧∧∧
Y2 ∈ Y2. Let {0, 1} ⊆

Tc ⊆ TconsL. Tc is admissible with respect to suprema and infima iff {0, 1} ⊆
Tc ⊆ [0, 1] is admissible with respect to suprema and infima.

Theorem 4 (Refutational Soundness and Completeness). Let L contain
a constant symbol. Let P ⊆ P̃, S ⊆ OrdClL∪P , tcons(S) be admissible with
respect to suprema and infima. � ∈ cloH(S) if and only if S is unsatisfiable.

Proof. (=⇒) Let A be a model of S for L∪P and C ∈ cloH(S) ⊆ OrdClL∪W̃∪P .
Then there exists an expansion A′ of A to L ∪ W̃ ∪ P such that A′ |= C. The
proof is by complete induction on the length of a deduction of C from S by
order hyperresolution. Let � ∈ cloH(S) and A be a model of S for L∪P . Hence,
there exists an expansion A′ of A to L ∪ W̃ ∪ P such that A′ |= �, which is a
contradiction; S is unsatisfiable.

(⇐=) Let � ∈ cloH(S). Then, by Lemma 2 for S, �, � ∈ cloBH(S); we have
L, P̃, W̃ are countable, P ⊆ P̃, S ⊆ OrdClL∪P , cloBH(S) ⊆ GOrdClL∪W̃∪P ;
P , L ∪ P , OrdClL∪P , S, L ∪ W̃ ∪ P , GOrdClL∪W̃∪P , cloBH(S) are countable;
there exists γ1 ≤ ω and � ∈ cloBH(S) = {∨kι

j=0 ει
j �ι

j υι
j | ι < γ1}; by Lemma 4

for S, there exists S∗ ∈ Sel({{j | j ≤ kι}ι | ι < γ1}) and there does not exist
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a contradiction of {ει
S∗(ι) �ι

S∗(ι) υι
S∗(ι) | ι < γ1} ⊆ GOrdClL∪W̃∪P . We put S =

{ει
S∗(ι) �ι

S∗(ι) υι
S∗(ι) | ι < γ1} ⊆ GOrdClL∪W̃∪P . Then ordtcons(S) ⊆ cloBH(S),

S ⊇ ordtcons(S) is countable, unit, (q)atoms(S) ⊆ (q)atoms(cloBH(S));
there does not exist a contradiction of S. We have L contains a constant symbol.
Hence, there exists cn∗ ∈ FuncL, arL(cn∗) = 0. We put W̃

∗ = funcs(S) ∩ W̃ ⊆
W̃, W̃

∗ ∩ (FuncL ∪ {f̃0}) ⊆ W̃ ∩ (FuncL ∪ {f̃0}) = ∅,

UA = GTermL∪W̃∗∪P , cn∗ ∈ UA = ∅,

B = atoms(S) ∪ qatoms(S) ⊆ GAtomL∪W̃∗∪P ∪ QAtomL∪W̃∗∪P .

We have S is countable. Then tcons(S) = atoms(ordtcons(S)) ⊆ atoms(S) ⊆
B, B = tcons(S) ∪ (B − tcons(S)), tcons(S) ∩ (B − tcons(S)) = ∅, atoms(S),
qatoms(S), B, tcons(S), B − tcons(S) are countable; there exist γ2 ≤ ω and a
sequence δ2 : γ2 −→ B − tcons(S) of B − tcons(S). Let ε1, ε2 ∈ B. ε1 � ε2 iff
there exists an equality chain ε1 Ξ ε2 of S. Note that � is a binary symmetric
transitive relation on B. ε1 � ε2 iff there exists an increasing chain ε1 Ξ ε2 of S.
Note that � is a binary transitive relation on B.

0 � 1, 1 � 0, 0� 1, 1� 0, for all ε ∈ B, ε � 0, 1� ε, ε � ε. (43)

The proof is straightforward; we have that there does not exist a contradiction
of S. Note that � is also irreflexive and a partial strict order on B.

Let tcons(S) ⊆ X ⊆ B. A partial valuation V is a mapping V : X −→ [0, 1]
such that V(0) = 0, V(1) = 1, for all c̄ ∈ tcons(S) ∩ CL, V(c̄) = c. We denote
dom(V) = X, tcons(S) ⊆ dom(V) ⊆ B. We define a partial valuation Vα by
recursion on α ≤ γ2 as follows:

V0 = {(0, 0), (1, 1)} ∪ {(c̄, c) | c̄ ∈ tcons(S) ∩ CL};
Vα = Vα−1 ∪ {(δ2(α − 1), λα−1)} (1 ≤ α ≤ γ2 is a successor ordinal),

Eα−1 = {Vα−1(a) | a� δ2(α − 1), a ∈ dom(Vα−1)},

Dα−1 = {Vα−1(a) | a� δ2(α − 1), a ∈ dom(Vα−1)},

Uα−1 = {Vα−1(a) | δ2(α − 1)� a, a ∈ dom(Vα−1)},

λα−1 =

⎧⎨
⎩

∨∨∨
Dα−1 +

∧∧∧
Uα−1

2
if Eα−1 = ∅,∨∨∨

Eα−1 else;

Vγ2 =
⋃

α<γ2

Vα (γ2 is a limit ordinal).

For all α ≤ α′ ≤ γ2, Vα is a partial valuation, dom(Vα) = tcons(S) ∪
δ2[α], Vα ⊆ Vα′ .

(44)

The proof is by induction on α ≤ γ2.
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We list some auxiliary statements without proofs:

If qatoms(S) = ∅, then qatoms(cloBH(S)) = ∅. (45)

tcons(S) = tcons(cloBH(S)). (46)

For all a, b ∈ atoms(cloBH(S)) ∪ qatoms(cloBH(S)), there exist a
deduction C1, . . . , Cn, n ≥ 1, from S by basic order hyperresolution,
associated Ln, Sn, Sn ⊆ GOrdClLn

, such that a, b ∈ atoms(Sn) ∪
qatoms(Sn).

(47)

For all ∅ = A ⊆F atoms(cloBH(S)) ∪ qatoms(cloBH(S)), there exist
a deduction C1, . . . , Cn, n ≥ 1, from S by basic order hyperresolu-
tion, associated Ln, Sn, Sn ⊆ GOrdClLn

, such that A ⊆ atoms(Sn) ∪
qatoms(Sn).

(48)

For all a ∈ tcons(S) ∩ CL, b ∈ B − tcons(S), either a� b or a� b or
b� a.

(49)

Let qatoms(S) = ∅. For all a, b ∈ B − {0, 1}, either a� b or (a = b or
a� b) or b� a.

(50)

For all α ≤ γ2, for all a, b ∈ dom(Vα),
if a� b, then Vα(a) = Vα(b);
if a� b, then Vα(a) < Vα(b);
if Vα(a) = 0, then a = 0 or a� 0;
if Vα(a) = 1, then a = 1 or a� 1;

for all α < γ2,
Vα[dom(Vα)] is admissible with respect to suprema and infima.

(51)

The proof is by induction on α ≤ γ2 using the assumption that tcons(S) is
admissible with respect to suprema and infima.

We put V = Vγ2 , dom(V)
(44)
== tcons(S)∪δ[γ2] = tcons(S)∪(B−tcons(S)) = B.

We further list some other auxiliary statements without proofs:

For all a, b ∈ B,

if a� b, then V(a) = V(b);
if a� b, then V(a) < V(b).

(52)

For all Qxa ∈ qatoms(cloBH(S)) and u ∈ UA,
a(x/u) ∈ atoms(cloBH(S)).

(53)
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For all a ∈ B,
if a = ∀xb, then V(a) =

∧∧∧
u∈UA

V(b(x/u));
if a = ∃xb, then V(a) =

∨∨∨
u∈UA

V(b(x/u)).

(54)

We put

f
A
(u1, . . . , uτ ) =

{
f(u1, . . . , uτ ) if f ∈ FuncL∪W̃∗∪P ,

cn∗ else,
f ∈ FuncL∪W̃∪P , ui ∈ UA;

p
A
(u1, . . . , uτ ) =

{V(p(u1, . . . , uτ )) if p(u1, . . . , uτ ) ∈ B,

0 else,
p ∈ PredL∪W̃∪P , ui ∈ UA;

A =
(UA, {f

A | f ∈ FuncL∪W̃∪P }, {p
A | p ∈ PredL∪W̃∪P }),

an interpretation for L ∪ W̃ ∪ P.

For all C ∈ S and e ∈ SA, C(e|freevars(C)) ∈ cloBH(S). (55)

It is straightforward to prove that for all a ∈ B and e ∈ SA, ‖a‖Ae = V(a). Let
l = ε1 � ε2 ∈ S and e ∈ SA. Then ε1, ε2 ∈ B, ε1 � ε2, by (52) for ε1, ε2,
V(ε1) = V(ε2), ‖l‖Ae = ‖ε1 � ε2‖Ae = ‖ε1‖Ae ��� ‖ε2‖Ae = V(ε1)��� V(ε2) = 1.
Let l = ε1 ≺ ε2 ∈ S and e ∈ SA. Then ε1, ε2 ∈ B, ε1 � ε2, by (52) for ε1, ε2,
V(ε1) < V(ε2), ‖l‖Ae = ‖ε1 ≺ ε2‖Ae = ‖ε1‖Ae ≺≺≺‖ε2‖Ae = V(ε1)≺≺≺ V(ε2) = 1. So, for
all l ∈ S and e ∈ SA, for both the cases l = ε1 � ε2 ∈ S and l = ε1 ≺ ε2 ∈ S,
‖l‖Ae = 1; ‖l‖Ae = 1. Let C ∈ S ⊆ OrdClL∪P and e ∈ SA. Then e : VarL −→
UA, freevars(C) ⊆F VarL, e|freevars(C) ∈ SubstL∪W̃∗∪P , dom(e|freevars(C)) =
freevars(C), range(e|freevars(C)) = ∅; e|freevars(C) is applicable to C; by (55) for
C, e, C(e|freevars(C)) ∈ cloBH(S), there exists l∗ ∈ C(e|freevars(C)) and l∗ ∈
S, ‖l∗‖Ae = 1; there exists l∗∗ ∈ C ∈ OrdClL∪P and l∗∗ ∈ OrdLitL∪P ⊆
OrdLitL∪W̃∗∪P , freevars(l∗∗) ⊆ freevars(C); e|freevars(l∗∗) is applicable to l∗∗,
l∗∗(e|freevars(l∗∗)) = l∗; for all t ∈ TermL∪W̃∗∪P , a ∈ AtomL∪W̃∗∪P ∪
QAtomL∪W̃∗∪P , l ∈ OrdLitL∪W̃∗∪P , ‖t‖Ae = t(e|vars(t)) = ‖t(e|vars(t))‖Ae ,
‖a‖Ae = ‖a(e|freevars(a))‖Ae , ‖l‖Ae = ‖l(e|freevars(l))‖Ae ; the proof is by induction
on t and by definition; ‖l∗∗‖Ae = ‖l∗∗(e|freevars(l∗∗))‖Ae = ‖l∗‖Ae = 1; A |=e C;
A |= S, A|L∪P |= S; S is satisfiable. The theorem is proved. ��

Consider S = {0 ≺ a} ∪ {a ≺ 1
n |n ≥ 2} ⊆ OrdClL, a ∈ PredL − TconsL,

arL(a) = 0. tcons(S) is not admissible with respect to suprema and infima;
for {0} and { 1

n |n ≥ 2},
∨∨∨{0} =

∧∧∧{ 1
n |n ≥ 2} = 0, 0 ∈ { 1

n |n ≥ 2}. S is
unsatisfiable; both the cases ‖a‖A = 0 and ‖a‖A > 0 lead to A  |= S for every
interpretation A for L. However, � ∈ cloH(S) = S ∪ {0 ≺ 1} ∪ {0 ≺ 1

n |n ≥
2} ∪ { 1

n ≺ 1 |n ≥ 2} ∪ { 1
n1

≺ 1
n2

|n1 > n2 ≥ 2} ∪ { 1
n ≺ a ∨ 1

n � a ∨ a ≺
1
n |n ≥ 2} ∪ { 1

n � a ∨ a ≺ 1
n |n ≥ 2} ∪ { 1

n ≺ a ∨ a ≺ 1
n |n ≥ 2}, using Rules

(37) and (36); cloH(S) contains the order clauses from S, from ordtcons(S), and
some superclauses of them. So, the condition on tcons(S) being admissible with
respect to suprema and infima, is necessary.



Expanding Gödel Logic 263

The deduction problem of an order formula from an order theory can be
solved as follows:

Corollary 2. Let L contain a constant symbol. Let n0 ∈ N, φ ∈ OrdFormL,
T ⊆ OrdFormL, tcons(T ) be admissible with respect to suprema and infima.
There exist Jφ

T ⊆ {(i, j) | i ≥ n0} and Sφ
T ⊆ SimOrdClL∪{p̃j | j∈Jφ

T } such that

tcons(Sφ
T ) is admissible with respect to suprema and infima; T |= φ if and only

if � ∈ cloH(Sφ
T ).

Proof. By Corollary 1 for n0, φ, T , there exist

Jφ
T ⊆ {(i, j) | i ≥ n0}, Sφ

T ⊆ SimOrdClL∪{p̃j | j∈Jφ
T }

and Corollary 1(i, iv) hold for φ, T , Sφ
T ; we have tcons(T ) is admissible with

respect to suprema and infima, tcons(Sφ
T ) ⊆ tcons(φ) ∪ tcons(T ); tcons(φ) ⊆F

TconsL, tcons(Sφ
T ) is admissible with respect to suprema and infima; we have

T |= φ if and only if Sφ
T is unsatisfiable; by Theorem 4 for {p̃j | j ∈ Jφ

T }, Sφ
T , Sφ

T

is unsatisfiable if and only if � ∈ cloH(Sφ
T ); T |= φ if and only if � ∈ cloH(Sφ

T ).
The corollary is proved. ��
Corollary 3. The set of unsatisfiable order formulae of L is recursively enu-
merable.

Proof. Without loss of generality, we may assume that L contains a constant
symbol. Let φ ∈ OrdFormL. Then φ contains a finite number of truth constants
and tcons({φ}) is admissible with respect to suprema and infima. φ is unsatisfi-
able if and only if {φ} |= 0. Hence, the problem that φ is unsatisfiable can be
reduced to the deduction problem {φ} |= 0 after a constant number of steps.
Let n0 ∈ N. By Corollary 2 for n0, 0, {φ}, there exist J0

{φ} ⊆ {(i, j) | i ≥ n0},
S0

{φ} ⊆ SimOrdClL∪{p̃j | j∈J0
{φ}} and tcons(S0

{φ}) is admissible with respect to

suprema and infima, {φ} |= 0 if and only if � ∈ cloH(S0
{φ}); if {φ} |= 0, then

� ∈ cloH(S0
{φ}) and we can decide it after a finite number of steps. This straight-

forwardly implies that the set of unsatisfiable order formulae of L is recursively
enumerable. The corollary is proved. ��

5 An Example

In this section, we illustrate the solution to the deduction problem by an example.
We show that φ = ∀x (q(x) ≺ 0.3) → ∃x q(x) ≺ 0.3 ∨ ∃x q(x) � 0.3 ∈ OrdFormL
is logically valid using the proposed translation to clausal form and the order
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hyperresolution calculus.

φ = ∀x (q(x) ≺ 0.3) → ∃x q(x) ≺ 0.3 ∨ ∃x q(x) � 0.3

{
p̃0(x) ≺ 1, p̃0(x) ↔ ( ∀x (q(x) ≺ 0.3)︸ ︷︷ ︸

p̃1(x)

→ ∃x q(x) ≺ 0.3 ∨ ∃x q(x) � 0.3︸ ︷︷ ︸
p̃2(x)

)}
(18)

{
p̃0(x) ≺ 1, p̃1(x) ≺ p̃2(x) ∨ p̃1(x) � p̃2(x) ∨ p̃0(x) � p̃2(x),

p̃2(x) ≺ p̃1(x) ∨ p̃0(x) � 1,

p̃1(x) ↔ ∀x (q(x) ≺ 0.3︸ ︷︷ ︸
p̃3(x)

), p̃2(x) ↔ ∃x q(x) ≺ 0.3︸ ︷︷ ︸
p̃4(x)

∨ ∃x q(x) � 0.3︸ ︷︷ ︸
p̃5(x)

}
(27), (17)

{
p̃0(x) ≺ 1, p̃1(x) ≺ p̃2(x) ∨ p̃1(x) � p̃2(x) ∨ p̃0(x) � p̃2(x),

p̃2(x) ≺ p̃1(x) ∨ p̃0(x) � 1, p̃1(x) � ∀x p̃3(x), p̃3(x) ↔ q(x)︸︷︷︸
p̃6(x)

≺ 0.3︸︷︷︸
p̃7(x)

,

p̃4(x) ≺ p̃5(x) ∨ p̃4(x) � p̃5(x) ∨ p̃2(x) � p̃4(x),

p̃5(x) ≺ p̃4(x) ∨ p̃2(x) � p̃5(x),

p̃4(x) ↔ ∃x q(x)︸ ︷︷ ︸
p̃8(x)

≺ 0.3︸︷︷︸
p̃9(x)

, p̃5(x) ↔ ∃x q(x)︸ ︷︷ ︸
p̃10(x)

� 0.3︸︷︷︸
p̃11(x)

}
(21), (20)

{
p̃0(x) ≺ 1, p̃1(x) ≺ p̃2(x) ∨ p̃1(x) � p̃2(x) ∨ p̃0(x) � p̃2(x),

p̃2(x) ≺ p̃1(x) ∨ p̃0(x) � 1, p̃1(x) � ∀x p̃3(x), p̃6(x) ≺ p̃7(x) ∨ p̃3(x) � 0,

p̃7(x) ≺ p̃6(x) ∨ p̃7(x) � p̃6(x) ∨ p̃3(x) � 1, p̃6(x) � q(x), p̃7(x) � 0.3,

p̃4(x) ≺ p̃5(x) ∨ p̃4(x) � p̃5(x) ∨ p̃2(x) � p̃4(x),

p̃5(x) ≺ p̃4(x) ∨ p̃2(x) � p̃5(x),

p̃8(x) ≺ p̃9(x) ∨ p̃4(x) � 0, p̃9(x) ≺ p̃8(x) ∨ p̃9(x) � p̃8(x) ∨ p̃4(x) � 1,

p̃8(x) ↔ ∃x q(x)
︸︷︷︸

p̃12(x)

, p̃9(x) � 0.3,

p̃10(x) � p̃11(x) ∨ p̃5(x) � 0,

p̃10(x) ≺ p̃11(x) ∨ p̃11(x) ≺ p̃10(x) ∨ p̃5(x) � 1,

p̃10(x) ↔ ∃x q(x)
︸︷︷︸

p̃13(x)

, p̃11(x) � 0.3
}

(28)
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S
φ
=

{
p̃0(x) ≺ 1 [1]

p̃1(x) ≺ p̃2(x) ∨ p̃1(x) � p̃2(x) ∨ p̃0(x) � p̃2(x) [2]

p̃2(x) ≺ p̃1(x) ∨ p̃0(x) � 1 [3]

p̃1(x) � ∀x p̃3(x) [4]

p̃6(x) ≺ p̃7(x) ∨ p̃3(x) � 0 [5]

p̃7(x) ≺ p̃6(x) ∨ p̃7(x) � p̃6(x) ∨ p̃3(x) � 1 [6]

p̃6(x) � q(x) [7]

p̃7(x) � 0.3 [8]

p̃4(x) ≺ p̃5(x) ∨ p̃4(x) � p̃5(x) ∨ p̃2(x) � p̃4(x) [9]

p̃5(x) ≺ p̃4(x) ∨ p̃2(x) � p̃5(x) [10]

p̃8(x) ≺ p̃9(x) ∨ p̃4(x) � 0 [11]

p̃9(x) ≺ p̃8(x) ∨ p̃9(x) � p̃8(x) ∨ p̃4(x) � 1 [12]

p̃8(x) � ∃x p̃12(x) [13]

p̃12(x) � q(x) [14]

p̃9(x) � 0.3 [15]

p̃10(x) � p̃11(x) ∨ p̃5(x) � 0 [16]

p̃10(x) ≺ p̃11(x) ∨ p̃11(x) ≺ p̃10(x) ∨ p̃5(x) � 1 [17]

p̃10(x) � ∃x p̃13(x) [18]

p̃13(x) � q(x) [19]

p̃11(x) � 0.3

}
[20]

Rule (36) : [1][3] :

p̃2(x) ≺ p̃1(x) [21]

repeatedly Rule (36) : [2][21] :

p̃0(x) � p̃2(x) [22]

repeatedly Rule (36) : [11][12] :

p̃4(x) � 0 ∨ p̃4(x) � 1 [23]

repeatedly Rule (36) : [16][17] :

p̃5(x) � 0 ∨ p̃5(x) � 1 [24]

repeatedly Rule (36) : [1][9][10][22][23][24] :

p̃4(x) � 0 [25]
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repeatedly Rule (36) : [1][9][10][22][23][24] :

p̃5(x) � 0 [26]

0 ≺ 1 ∈ ordtcons(Sφ)

0 ≺ 1 [27]

Rule (36) : [12][25][27] :

p̃9(x) ≺ p̃8(x) ∨ p̃9(x) � p̃8(x) [28]

Rule (36) : [17][26][27] :

p̃10(x) ≺ p̃11(x) ∨ p̃11(x) ≺ p̃10(x) [29]

Rule (39) : ∀x p̃3(x) :

∀x p̃3(x) ≺ p̃3(x) ∨ ∀x p̃3(x) � p̃3(x) [30]

repeatedly Rule (36) : [4][5][21][30] :

p̃6(x) ≺ p̃7(x) [31]

Rule (42) : ∃x p̃12(x), 0.3 :

0.3 ≺ p̃12(w̃(0,0)) ∨ ∃x p̃12(x) ≺ 0.3 ∨ ∃x p̃12(x) � 0.3 [32]

Rule (42) : ∃x p̃13(x), 0.3 :

0.3 ≺ p̃13(w̃(1,1)) ∨ ∃x p̃13(x) ≺ 0.3 ∨ ∃x p̃13(x) � 0.3 [33]

Rule (42) : ∃x p̃12(x), ∃x p̃13(x) :

∃x p̃13(x) ≺ p̃12(w̃(2,2)) ∨ ∃x p̃12(x) ≺ ∃x p̃13(x) ∨ ∃x p̃12(x) � ∃x p̃13(x) [34]

Rule (36) : [7][8][14][31]; x/w̃(0,0) : [32] :

∃x p̃12(x) ≺ 0.3 ∨ ∃x p̃12(x) � 0.3 [35]

Rule (36) : [7][8][19][31]; x/w̃(1,1) : [33] :

∃x p̃13(x) ≺ 0.3 ∨ ∃x p̃13(x) � 0.3 [36]

Rule (40) : ∃x p̃13(x) :

p̃13(x) ≺ ∃x p̃13(x) ∨ p̃13(x) � ∃x p̃13(x) [37]

repeatedly Rule (36) : [14][19][37]; x/w̃(2,2) : [34] :

∃x p̃12(x) ≺ ∃x p̃13(x) ∨ ∃x p̃12(x) � ∃x p̃13(x) [38]

repeatedly Rule (36) : [13][15][28][35] :

p̃9(x) � p̃8(x) [39]

repeatedly Rule (36) : [18][20][29][36] :

p̃10(x) ≺ p̃11(x) [40]

repeatedly Rule (36) : [13][15][18][20][38][39][40] :

� [41]
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6 Conclusions

In the paper, we have refined the hyperresolution calculus proposed in [11–15],
which is suitable for automated deduction in the first-order Gödel logic with
explicit partial truth. Gödel logic is expanded by a countable set of intermediate
truth constants of the form c̄, c ∈ (0, 1). We have modified translation of a for-
mula to an equivalent satisfiable finite order clausal theory, consisting of order
clauses. An order clause is a finite set of order literals of the form ε1 � ε2 where
εi is an atom or a quantified atom, and � is the connective � or ≺. � and ≺ are
interpreted by the equality and standard strict linear order on [0, 1], respectively.
We have investigated the so-called canonical standard completeness, where the
semantics of Gödel logic is given by the standard G-algebra and truth constants
are interpreted by ‘themselves’. The refined hyperresolution calculus is refuta-
tion sound and complete for a countable order clausal theory if the set of truth
constants occurring in the theory, is admissible with respect to suprema and
infima. This condition covers the case of finite order clausal theories. We have
solved the deduction problem of a formula from a countable theory and got an
affirmative solution to the open problem of recursive enumerability of unsatis-
fiable formulae in Gödel logic with truth constants and the equality, ���, strict
order, ≺≺≺, projection, ΔΔΔ, operators.
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Abstract. Land cover change (LCC) mapping is one of the basic tasks
for environmental monitoring and management. The most significant fac-
tors in determining the performance of model of LCC prediction are its
structure and parameter optimization. However, these factors are gen-
erally marred by uncertainties which affect the reliability of decision
about changes. The reduction of these uncertainties is deemed as essen-
tial elements for LCC prediction modeling. Propagation of uncertainty
appears as good alternative for decreasing the uncertainty related to
LCC prediction process and therefore obtain more relevant decision. On
the other hand, correlation analysis between model parameters is often
neglected. This affects the reliability of the model and makes it difficult
to better determine the uncertainty related to model parameters. Sev-
eral studies in literature depicts that evidence theory can be applied to
propagate uncertainty associated to LCC prediction models and to solve
multidimensional problems. This paper presents an effective optimization
scheme for the LCC prediction modeling based on the uncertainty prop-
agation of model parameters and model structure. Uncertainty propaga-
tion is analyzed by using evidence theory without and with considering
correlations. In this study, change prediction of land cover in Saint-Denis
City, Reunion Island of next 5 years (2016) was anticipated using multi-
temporal Spot-4 satellite images acquired at the dates 2006 and 2011.
Results show good performances of the proposed approach in improving
prediction of the LCC. Results also demonstrate that the proposed app-
roach is an effective and efficient method due to its adequate degree of
accuracy.

Keywords: LCC prediction · Parameter uncertainty · Correlation
analysis · Model structure uncertainty · Uncertainty propagation ·
Evidence theory

1 Introduction

LCC is a topic that has recently received considerable attention in the prospec-
tive modeling domain. Predicting changes in forthcoming years may play a
c© Springer International Publishing AG 2017
J.J. Merelo et al. (eds.), Computational Intelligence, Studies in Computational Intelligence 669,
DOI 10.1007/978-3-319-48506-5 14
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significant role in planning and optimal use of resources and harnessing the
non-normative changes in the future [7,8]. In literature, several models are pro-
posed to predict LCC such as cellular automata models [1], markov chain model
[5], logistic regression models [2], agent-based models [3], data mining models
[6], and artificial neural networks [4]. In general, input parameters of each of
these models and the prediction model structure are marred by uncertainties
which affect the reliability of decision about these changes [7,9,10]. Uncertainty
in model parameters is due to natural variability, measurement inaccuracy, and
errors in handling and processing data [11,12]. Model structure encloses uncer-
tainty which is due to model assumptions/approximations, hypotheses, and scale
effects. Propagation of uncertainty helps improve the change prediction process
and decrease the associated uncertainties. More recent applications to propagate
uncertainty in remote sensing have been reported, e.g. [7,13–16]. For example,
Boulila et al. [7] focused on propagating uncertainty related to input parame-
ters of LCC prediction model without taking into account the uncertainty in
model structure. Authors explore how those uncertainties propagate through
LCC model responses using probabilistic method. Sexton et al. [13] proposed a
model for the input parameters uncertainty propagation from continuous esti-
mates of tree cover to categorical forest cover and change. Cockx et al. [16]
developed an approach of quantification and reduction of the uncertainties to
improve the reliability of urban growth models in land-use mapping and land-
use change model parameter assessment. Others few works have investigated the
issue of propagating uncertainty related to model structure. Bastola et al. [17]
proposed a probabilistic approach to study the role of the uncertainty of model
structure in climate change.

A major limitation of many existing approaches is that they take into account
a single uncertainty source (model parameters or model structure) for land cover
decision making processes.

Propagation of uncertainty based on a single uncertainty source is prone to
statistical bias and underestimation of uncertainty. Ignoring one of uncertainty
source could lead to over-confident inferences and decisions that are more risky
than one thinks they are.

On the other hand, correlation analysis between system parameters is often
neglected when modeling this system. Correlation of parameters often blurs the
model uncertainty and makes it difficult to determine parameters uncertainty.

Several studies in literature depict that evidence theory can be applied to
propagate uncertainty associated to LCC prediction models and to solve mul-
tidimensional problems. The aim of this paper is to propagate the uncertainty
associated with both LCC prediction model parameters and model structure
using evidence theory without and with considering correlations between para-
meters. The proposed approach is divided into four main steps: (1) parameter
uncertainty identification step is used to identify uncertain input parameters,
their types of uncertainty (aleatory and/or epistemic), their sources of uncer-
tainty, their reduction factors, and their correlations, according to study area
and used data, (2) parameter uncertainty propagation step is used to propagate
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input parameters uncertainty, (3) model structure uncertainty identification step
is used to identify the LCC prediction model structure, their types of uncertainty,
and their sources of uncertainty, and 4) model structure uncertainty propagation
step is used to propagate the uncertainty associated to LCC prediction model
structure.

This paper is outlined as follows. Section 2 introduces the theory of evidence.
Section 3 presents materials and methods for the uncertainty propagation of LCC
prediction process using evidence theory. Section 4 depicts experiment results.
Finally, conclusions are outlined in Sect. 5.

2 Evidence Theory

Evidence theory, also called as Dempster-Shafer theory, was initially developed
by [18] and formalized by [19]. The evidence theory has the potential to quantify
aleatory and epistemic uncertainties. This theory is also used for propagating
correlated and uncorrelated input parameters through LCC prediction models.
In this section, the basic notations of the evidence theory are introduced.

Frame of Discernment (FD). The FD is defined by the finest possible sub-
divisions of the sets, and the finest possible subdivision is called the elementary
proposition.

Basic Probability Assignment (BPA). Let Θ be a finite set of mutually
exclusive and exhaustive hypotheses, and 2Θ be the power set of Θ. The funda-
mental concept for representing imperfection is the BPA, which defines a map-
ping function (m) of 2Θ to the interval between 0 and 1. The measure m, BPA
function, must satisfy the following axioms:

m(A) ≥ 0, ∀A ⊆ Θ. (1)

m(∅) = 0 (2)∑
m(A) = 1. ∀A ⊆ Θ. (3)

Belief and Plausibility Functions. The measures of uncertainty provided by
evidence theory are known as belief (Bel) and plausibility (Pl), which also lie in
the interval [0, 1]. Given a body of evidence, the (Bel) and (Pl) can be derived
from the BPA by

Bel(B) =
∑
A⊆B

m(A). (4)

Pl(B) =
∑

B∩A �=∅
m(A). (5)

The formulas make it easy to see that the belief function, (Bel), is calculated by
summing the BPAs that totally agree with the event B, while the plausibility
function, (Pl), is calculated by summing BPAs that agree with the event B totally
and partially. These two functions can be derived from each other. For example,
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the belief function can be derived from the plausibility function in the following
way:

Bel(B) = 1 − Pl(B) (6)

The relationship between belief and plausibility functions is

Bel(B) ≤ Pl(B) (7)

which shows that as a measure of “event B is true”, if P (B) is the true value
of the measure of set B is true, then Pl(B) is the upper bound of P (B), and
Bel(B) is the lower bound, so

Bel(A) ≤ P (A) ≤ Pl(A) (8)

Dempster’s Rule of Combining. The Dempster’s rule of combination is an
operation that plays a central role in the evidence theory. The BPAs induced by
several sources are aggregated using this rule in order to yield a global BPA that
synthesizes the knowledge of the different sources. Take two BPA structures, m1

and m2, for instance, the combined structure m12 is calculated in the following
manner:

m12(A) =
∑

B∩C=A m1(B)m2(C)
1 − K

when A �= ∅ (9)

m12(∅) = 0, when K =
∑

B∩C �=∅
m1(B)m2(C) (10)

The coefficient K represents the mass that the combination assigns to ∅ and
reflects the conflict among the sources. The denominator in Dempster’s rule,
1 − K, is a normalization factor, which throws out the opinion of those experts
who assert that the object under consideration does not exist.

3 Materials and Proposed Approach

3.1 Study Area and Data

The study area is Reunion Island. It is a French territory of 2500 km2 located
in the Indian Ocean, 200 km South-West of Mauritius and 700 km to the East
of Madagascar (Fig. 1). Mean annual temperatures decrease from 24 ◦C in the
lowlands to 12 ◦C at ca 2000 m. Mean annual precipitation ranges from 3 m on
the eastern windward coast, up to 8 m in the mountains and down to 1 m along
the south western coast. Vegetation is most clearly structured along gradients of
altitude and rainfall [35]. Reunion Island has a strong growth in a limited area
with an estimated population of 833,000 in 2010 that will probably be more than
1 million in 2030 [32]. These significant changes put pressure on agricultural and
natural areas. The urban areas expanded by 189% over the period from 1989
to 2002 [33] and available land became a rare and coveted resource. The land-
scapes are now expected to fulfil multiple functions i.e. urbanisation, agriculture
production and ecosystem conservation. This causes conflicts among stakehold-
ers about their planning and management [34]. Among cities on Reunion Island
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which is affected bu urban sprawl, Saint−Denis. It is the capital of Reunion
Island, and the city with the most inhabitants on the island (Fig. 1). It hosts all
the important administrative offices, and is also a cultural center with numer-
ous museums. Saint-Denis is also the largest city in all of the French Overseas
Departments.

Fig. 1. Location of the study area.

Available remote sensing data for this research include classified images of
land over of Saint−Denis from SPOT-4 images for the years 2006 and 2011
(Fig. 2). Selecting these images benefits from advantages such as a broad and
integrated view, multispectral images and replicated coverage in different time
periods. For this study, satellite data were classified after initial corrections and
processing in order to prepare the data for extracting useful information. Spec-
tral, geometric, and atmospheric corrections of images were conducted to make
features manifest, increase the quality of images and to eliminate the adverse
effects of light and atmosphere. Five types of land cover are determined in the
study area such as water, urban, forest, bare soil, and vegetation.

3.2 Proposed Approach

Predicting future changes may play a significant role in planning and optimal
use of resources and harnessing the non-normative changes in the future. As we
mentioned, several models are proposed in order to predict LCC [1–6]. In this
paper, we apply the LCC prediction model described by Boulila et al. in [6] to
the Saint-Denis City, Reunion Island. This model exploits data mining concepts
to build predictions and decisions for several remote sensing fields. It takes into
account uncertainty related to the spatiotemporal mining process in order to
provide more accurate and reliable information about LCC in satellite images.
The prediction model proposed by Boulila et al. in [6] is divided into three main
steps. It starts by a similarity measurement step to find similar states (in the
object database) to a query state (representing the query object at a given date).
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Fig. 2. Land cover maps.

The second step is composed by three substeps: (1) finding the corresponding
model for the state, (2) finding all forthcoming states in the model (states having
dates superior to the date of the retrieved state), and (3) for each forthcoming
date, build the spatiotemporal change tree for the retrieved state. The third step
is to construct the spatiotemporal change for the query state. Interested readers
can refer to [6,20].

The uncertainty propagation through this model can be carried out by the
following steps (Fig. 3): (1) identifying the uncertain parameters and their cor-
relations; (2) propagating parameter uncertainty through the LCC prediction
model using evidence theory without and with considering correlation between
parameters; (3) identifying types and sources of uncertainty of model structure;
(4) propagating the model structure uncertainty using evidence theory.

Parameters of LCC Prediction Model. Input parameters of LCC predic-
tion model describe object features or descriptors extracted from satellite images
and which are subject of studying changes. In this study, we extracted differ-
ent features from SPOT-4 satellite images by using ten spectral, five texture,
seven shape, one vegetation, and three climate descriptors. Spectral descriptors
are: mean values and standard deviation values of green (MG, SDG), red (MR,
SDR), NIR (MN, SDN), SWIR (MS, SDS) and monospectral (MM, SDM) bands
for each image object. Texture descriptors are: homogeneity (Hom), contrast
(Ctr), entropy (Ent), standard deviation (SD) and correlation (Cor) generated
from GLCM (Gray Level Co-occurrence Matrix). Shape and spatial relation-
ships descriptors are: area (A), length/width (LW), shape index (SI), roundness
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Fig. 3. General modelling proposed framework.

(R), density (D), metric relations (MR) and direction relations (DR). Vegetation
descriptor is: NDVI (Normalized Difference Vegetation Index) that is the ratio
of the difference between NIR and red reflectance. Finally, Climate descriptors
are: temperature (Tem), humidity (Hum), and pressure (Pre). These descriptors
were selected based on previous results as reported in [5]. Uncertainties related
to these input parameters can be very numerous and affect model outputs. In
general, these uncertainties can be of two types: aleatory and epistemic. The
former comes from the natural variability of a random event, while the latter
represents a lack of knowledge. Aleatory uncertainty is often referred to as irre-
ducible uncertainty because a better understanding of the natural phenomena
cannot reduce it. On the contrary, improving our background knowledge can
reduce our epistemic uncertainty; therefore, we call it reducible uncertainty. The
type of uncertainty of each parameter depends on sources of its uncertainty.
Therefore its necessary to identify uncertainty sources that should be considered
for processing. Table 1 shows the uncertain input parameters of LCC prediction
model, their types, and their sources of uncertainty. In the current work, the
spectral, NDVI, and climate parameters are modeled as an aleatory uncertain
variables described with normal probability distributions. The texture and shape
parameters are modeled as epistemic uncertain variables because their uncer-
tainty originates due to the lack of knowledge in a physical model, and they are
represented with intervals with specified bounds. In the literature, several studies
have proposed some solutions (reduction factors) of uncertainty sources of the
uncertain input parameters. Table 1 shows these reduction factors. According to
these factors, we can improve the quality of input parameters before their use in
propagating uncertainty step. We act on the distribution of each parameter to
reduce their uncertainty sources. On the other hand, input parameters in remote
sensing systems are not independent of each other. The value of one parameter
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can influence the value of another. LCC prediction models usually contain a
large number of correlated parameters leading to non-identifiability problems.
In this study, the Pearson correlation coefficient is used for analyses of linear
correlation between input parameters of LCC prediction model.

Propagation of Parameters Uncertainty. The objective of this step is to
propagate aleatory and epistemic input parameters through LCC prediction
model without and with considering correlations. Different kinds of theories have
been developed to propagate the uncertainty, including probability theory [6],
fuzzy sets [21], possibility theory [22], p-box approach [23], fuzzy probabilities
[24], and evidence theory [19], etc. Among the mentioned approaches, evidence
theory seems to be more general than other modeling techniques. Under differ-
ent cases, it can provide equivalent formulations to classical probability theory,
possibility theory, p-box approach and fuzzy sets, respectively. The proposed
approach takes advantages of the evidence theory to combine aleatory and epis-
temic uncetainty in a very natural way and to consider correlation between input
parameters [25] for the LCC prediction process. In addition, evidence theory has
been widely used in the remote sensing literature about 20 years ago. The main
use of this theory has been in data fusion, image segmentation and classification,
climate change [26–28]. In this section, the procedures of propagating the uni-
fied structures dealing with both aleatory and epistemic uncertainty and while
considering correlation between parameters will be addressed. For the proposed
model, first we should identify which type of uncertainty of each parameter. To
illustrate the proposed method, we use a simple transfer function which has two
uncertain parameters

Y = f(E,A). (11)

where E represents the epistemic uncertainty parameter, A represents the
aleatory uncertainty parameter and Y is the model response of the LCC.
For E, the epistemic uncertainty is generally expressed by a series of
subsets of the universal set associated with a BPA structure just as
{[EL

1 , EU
1 ]/m(1), [EL

2 , EU
2 ]/m(2), ..., [EL

k , EU
k ]/m(k), ...|k ∈ (1, 2, ...,M)}. Where

M is the total number of subintervals of E and m(k) represents the BPA value
associated with the kth subinterval [EL

k , EU
k ]. When there are different BPA

structures, we can use combining rule to integrate them into a combined BPA
structure as Ej/m(Ej)(j ∈ [1, 2, ,M ]) ultimately, where Ej is also an interval
as [EL

j , EU
j ] and m(Ej) is the BPA value associated with the interval Ej . For

A, assuming A is normal distribution A ∼ (μ, σ), the distribution scope can
be truncated to [μ − ξσ, μ + ξσ] approximately and then we can discretize the
approximate interval into N subintervals [AL

i , AU
i ], i ∈ [1, 2, , N ], and for each

subinterval the basic probability value is defined as show in Eq. (12)

m(Ai) =
∫ AU

i

AL
i

f(x)dx, i ∈ [1, 2, ..., N ]. (12)

where Ai is defined as {Ai|x ∈ [AL
i , AU

i ]} and f(x) is the probability density dis-
tribution function (pdf) of x. Obviously for the random parameter, the equivalent
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Table 1. Types, sources, and reductions factors of uncertainty of input parameters of
LCC prediction model.

Parameters Uncertainty type Uncertainty sources Reduction factors of uncer-

tainty

Spectral parameters Aleatory -Spectral reflectance of the

surface

-Sensor calibration and sensor

noise

-Effect of mixed pixels

-Effect of a shift in the channel

location

-Pixel registration between

several spectral channels

-Atmospheric temperature

and moisture profile

-Effect of haze particles

-Instrument’s operation condi-

tions

-Atmospheric conditions and

clouds

-Surface conditions that

change the target reflectance

-Topography and viewing

geometry

-Strict requirements for the

instruments design

-Envisaging of appropriate pro-

cedures for on-board calibra-

tion

-Choosing appropriate algo-

rithms for radiometric and

atmospheric correction

-Reducing the wavelength

range of the irradiance or

spectral response measurement

-Reducing the cloud shad-

ows and cloud contamination

effects and reducing errors of

sensor system itself

Texture parameters Epistemic -Spatial interaction between

the size of the object in the

scene and the spatial resolu-

tion of the sensor

-Ambiguity in the object/

background distinction

-Using high spatial resolu-

tion and choosing appropriate

methods for segmentation

Shape parameters Epistemic -Accounting for the seasonal

position of the sun with

respect to the Earth

-Conditions in which the

image was acquired change in

the scene’s illumination

-Atmospheric conditions

-Observation geometry

-Improving platforms stability

and carriers velocity

-Technological enhancement of

the sensors themselves

-Reducing effects of

atmospheric conditions

-Improving the overall segmen-

tation quality

-Reducing the number of bad

pixels and the size of bad areas

-Improvement of the uncer-

tainty of pixel response

Vegetation parameter Aleatory -Variation in the brightness of

soil background

-Red and NIR bands

-Atmospheric perturbations

-Variability in the structure of

sub-pixel

-Choosing appropriate algo-

rithms for atmospheric correc-

tion

-Reducing errors in surface

measurements for the NIR and

red bands

-Reducing temporal variations

effects in the solar zenith and

azimuth angles

-Reducing sun angle effects and

noise contamination

Climate parameters Aleatory -Atmospheric correction

-Sensor noise

-Land surface emissivity

-Aerosols and other gaseous

absorbers

-Angular effects

-Wavelength uncertainty

-Full-width half maximum

of the sensor and band-pass

effects

-Choosing appropriate algo-

rithms for atmospheric correc-

tion

-Reducing errors of sensor sys-

tem itself

-Reducing emissivity variations
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BPA values within specified intervals are equal to the area under the pdf. After
obtaining the BPA structures of all the uncertain parameters, we can integrate
them into a joint structure. The joint BPA structure is defined by the Cartesian
product, which is synthesized as

C = A × E = {cij = Ai × Ej} (13)

where C denotes the Cartesian set of all the uncertain parameters and cij is the
element of C.
− When the uncertain parameters, E and A, are independent, the joint BPA for
cij is defined by multiplying the BPA of Ai to the BPA of Ej .

m(cij) = m(Ai) × m(Ej) (14)

The focal element cij is included by the joint FD, and its BPA is just equal to
the multiplication of the corresponding marginal BPAs.
− When the uncertain parameters, E and A, are correlated, we will develop a
new evidence theory model which takes into account the correlation among para-
meters based on ellipsoidal model [10]. This model is originally proposed for non-
probabilistic uncertainty analysis. Here the ellipsoidal model is extended to deal
with the correlated evidence parameters. For this purpose, a multidimensional
ellipsoid is constructed by making all possible realizations of the N-dimensional
inter-correlated evidence parameters fall into a joint FD:

Ω = {X|(X − Xc)TG(X − Xc) ≤ 1} (15)

where the ellipsoidal center Xc is obtained through the marginal FDs:

Xm
c =

Xm
L + Xm

R

2
,m = 1, 2, ..., N (16)

where Xm ∈ cij are the evidence parameters (aleatory and epistemic
parameters).

The symmetric positive-definite characteristic matrix G determines the size
and orientation of the ellipsoid, reflecting the degree and the manner of corre-
lation between the evidence parameters. Obviously, one should assign the belief
probabilities only to the elements cij that are partially or totally falling into the
ellipsoid model. Thus, a joint BPA is formulated as

m(cij ∩ Ω) =
m(Ai) × m(Ej)

S
, cij ∩ Ω �= 0 (17)

where S is a normalization factor to make the total BPAs of m equal to 1.0,
which is given by

S =
∑

cij∩Ω �=0

m(cij) (18)

Then, get the upper and lower CDFs of system response y via evidence reasoning.
Let ΘY = {dij : dij = f(cij), cij ⊂ ΘX} denotes the frame of discernment of Y,
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where dij is its focal element, f is the LCC prediction model in (11), and ΘX is
the frame of discernment of X. After determining the sets, cij and dij , the belief
and plausibility functions are evaluated by checking all propositions of the joint
BPA structure, as given in the following equations [14].

BelY (dij) = BelX[f−1(dij)] =
∑

cij⊂f−1(dij)

mX(cij) (19)

PlY (dij) = PlX[f−1(dij)] =
∑

cij∩f−1(dij) �=∅
mX(cij) (20)

Then

BelY (y < v) = BelX[f−1(Yv)] =
∑

cij⊂f−1(Yv)

mX(cij) (21)

PlY (y < v) = PlX[f−1(Yv)] =
∑

cij∩f−1(Yv) �=∅
mX(cij) (22)

Yv = {y : y < v, y ∈ ΘY } (23)

From (8),
BelY (y < v) ≤ P (y < v) ≤ PlY (y < v) (24)

Obviously, BelY is the lower CDF of the LCC prediction system response Y ,
and PlY is the upper CDF.

– Algorithm of the Ellipsoidal Model Construction: Assuming that there are
t experimental samples X(r), r = 1, 2, ..., t for the N evidence parameters
and each sample is an N-dimensional vector, the ellipsoidal model can be
established as follows:

1. Take a pair of evidence parameters Xm and Xn (m �= n) at a time from
the uncertain parameter set.

2. Extract the values of Xm and Xn from the t experimental samples and
construct a corresponding bivariant sample set (X(r)

m ,X
(r)
n ), r = 1, 2, ..., t.

3. Create a minimum ellipse enveloping the obtained bivariant samples and
obtain the corresponding rotation angle θ.

4. Compute the covariance (Cov) and correlation coefficient (ρ) of the two
uncertain parameters Xm and Xn based on the value of θ:

• Cov(Xm,Xn) = tan(θ)
1−tan2(θ) ((X

w
m)2 − (Xw

n )2) where Xw
m = Xm

L+Xm
R

2

and Xw
n = Xn

L+Xn
R

2 represent the radii of Xm and Xn, respectively.
• ρXmXn

= Cov(Xm,Xn)
Xw

mXw
n

, −1 ≤ ρXmXn
≤ 1.

5. Repeat the above process for all pairs of uncertain parameters, and obtain
a total of N(N −1)/2 covariances and correlation coefficients for all para-
meters.

6. Create a covariance matrix C based on the calculated covariances.
7. Finally, an ellipsoidal model can be obtained:

Ω = {X|(X − Xc)TC−1(X − Xc) ≤ 1} (25)
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Model Structure of LCC Prediction. Models of LCC prediction are sim-
plifications of reality; they are theoretical abstractions that represent systems in
such a way that essential features crucial to the theory and its application are
identified and highlighted [29]. LCC models are tools to support the analysis of
the causes and consequences of LCC for a better understanding of the system
functionality, and to support land-use planning and policy [30]. Models are useful
for simplifying the complex suite of socioeconomic and biophysical forces that
influence the rate and spatial pattern of LCC and for estimating the impacts of
changes [30]. Generally, each prediction model structure is represented by a num-
ber of hypotheses which are decisions or judgments considered by analysts. From
a prediction model structure to another, the representations are different. There-
fore it can keep uncertain representations. For example, when two hypotheses
H1, H2 are given by two different experts, then we have two different structural
models M1 and M2. The uncertainty related to LCC prediction model structure
is often neglected in the process of uncertainty treatment although according to
Droguett and Mosleh [31] their impact on results was important and sometimes
even more important than the impact of input parameters uncertainties. These
impacts should therefore be taken into account in the final decision process.
In most cases, uncertainty about LCC prediction model structure is a form of
epistemic uncertainty because we are unsure whether their constructions are
reasonable and complete. It would be aleatory uncertainty only if the structure
of the governing model were itself to change over time, across space, or among
components in some population.

Propagation of Model Structure Uncertainty. The uncertainty propaga-
tion of LCC prediction model structure is implemented in combination with the
propagation of the input parameters uncertainty. In this section, as input para-
meters uncertainty are modeled by evidence theory, we use this technique in this
framework. Suppose that a set of alternative models Mk, 1 ≤ k ≤ K represents
the uncertainty related to the choice of model. For each model Mk, input para-
meters uncertainty is propagated through this model. Consequently, the output
indicator Y is characterized by a set of uncertainty representations according
to each alternative model. Thus, for all alternative models Mk, 1 ≤ k ≤ K, we
have a set of pairs of belief and plausibility functions for output variable Y ,
noted {[Bel1(Y ), P l1(Y )], [Bel2(Y ), P l2(Y )], ..., [BelK(Y ), P lK(Y )]}. The dif-
ference between these representations reflects the variation associated to
LCC prediction model structure uncertainty. These different representations
[Beli(Y ), P li(Y )], 1 ≤ i ≤ K can be combined into a single representation.
Therefore, the final uncertainty representation of output variable Y can be
obtained by the following formulas.

Bel∗(Y ) = min(Bel1(Y ), Bel2(Y ), ..., BelK(Y )) (26)

Pl∗(Y ) = max(Pl1(Y ), P l2(Y ), ..., P lK(Y )) (27)



282 A. Ferchichi et al.

The belief and plausibility functions [Bel∗(Y ), P l∗(Y )] take into account both
model parameters and structure uncertainty of LCC prediction in the final out-
put result.

4 Experiment Results

The aim of this section is to validate and to evaluate the performance of the
proposed approach in propagating uncertainty related to input parameters of
LCC prediction model and uncertainty related to model structure. This section
is divided into two parts: validation of the uncertainty propagation of LCC pre-
diction model and validation of LCC prediction maps.

4.1 Validation of the Uncertainty Propagation of LCC Prediction
Model

The validation section is divided into two main steps: (1) Propagating uncer-
tainty of input parameters, and (2) Propagating uncertainty of input parameters
and model structure.

Propagating Uncertainty of Input Parameters. As mentioned already,
input parameters of LCC prediction model (M1) are marred by aleatory and
epistemic uncertainty. Ignoring each of these types can affect the results of
uncertainty propagation. To illustrate the importance of propagating both uncer-
tainty types in LCC prediction model, the analysis with pure aleatory uncer-
tainty assumption was conducted where all 26 uncertain input parameters were
treated as aleatory with normal probability distributions. In this case, the cumu-
lative distribution function (CDF) of output representing only the uncertainty
in input parameters is obtained via evidence theory. Figure 4 shows this dis-
tribution based on 10,000 samples. The probability distribution of probability
results obtained by Monte Carlo method with 10,000 samples is also plotted
in Fig. 4. Now, for both aleatory and epistemic uncertainty propagation of only
input parameters in LCC prediction model (M1), the specified bounds were uti-
lized for the epistemic uncertain input parameters and the normal probability
distributions were utilized for aleatory uncertain input parameters. The 10,000
samples were selected for both aleatory and epistemic cases. The CDF produced
is shown in Fig. 5.

As we have indicated also, input parameters of LCC prediction model (M1)
are highly correlated. Then, it is necessary to study the effect of these corre-
lated input parameters on output response variation and uncertainty propaga-
tion results. According to Pearson correlation coefficient, for example we found
statistically significant correlations between the shape parameters (Fig. 6). Sum-
marily, the shape index was significantly correlated with the Area, Density, and
length/width. Moreover, we found statistically significant correlations between
the NDVI parameter and climate parameters (Fig. 7). The NDVI parameter had
a highest correlation with the temperature and pressure. Another result is that
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Fig. 4. Belief and plausibility functions of LCC prediction model output: case of
aleatory uncertainty.

Fig. 5. Belief and plausibility functions of LCC prediction model output: case of
aleatory and epistemic uncertainty.

the spectral parameters were correlated with texture parameters. To compare
the influence of input parameters, Fig. 8 shows both the distribution of the LCC
when the correlation (dependence) between input parameters is considered and
the cumulative distribution of LCC when correlation between parameters is not
taken into consideration in LCC prediction model (M1). Note that capturing the
true relationship among the input parameters can be crucially important to the
accurate computation of the uncertainty in model predictions.

Propagation of Parameters and Model Structure Uncertainty. In
order to illustrate the importance of modeling and taking into account uncer-
tainty in the model structure, we used the LCC prediction model described by
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Fig. 6. Scatter plots of shape parameters of satellite image objects.

Fig. 7. Scatter plots of NDVI and climate parameters of satellite image objects.

Boulila et al. in [6] with three different hypotheses. Then, we have three differ-
ent models such as M1/H1, M2/H2, and M3/H3. Thus, to take into account the
model structure uncertainty in the final result, for each prediction model, the
uncertainty associated with the input parameters are first propagated. Figure 5
shows the result of the belief and plausibility functions of the LCC prediction
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Fig. 8. Comparison between Belief and plausibility functions of LCC prediction model
output for (in) dependence analysis.

model where only input parameters uncertainty is propagated. After the input
parameters uncertainty propagation of three prediction models such as M1/H1,
M2/H2, and M3/H3, we have three uncertainty representations of LCCs, which
are shown in Fig. 9. The difference between these three representations presents
the impact of uncertainty of LCC prediction model structure. Compared with
the result of LCC prediction model (M1), we can see that, this difference is
important. Figure 10 shows the belief and plausibility functions representing the
integrated input parameters and model structure uncertainty about the LCCs.
Note that the combined effect of model structure and input parameters uncer-
tainty lead to a wider uncertainty bound of the LCC when compared against
the input parameters uncertainty case (Fig. 5). Also, the most probable value
for the LCC when only input parameters uncertainty is taken into account is
considerably lower than in the combined case, indicating an underestimation of
the LCC.

4.2 Validation of LCC Prediction Maps

The validation of LCC prediction maps consisted on two phases. First, the 2011
LCC was simulated using the 2006 datasets, which was then compared with
the actual LCC in 2011 to evaluate the accuracy and the performance of the
proposed approach. Second, forthcoming changes are simulated using the actual
2011 datasets. Figure 11 compares actual and simulated percentages occupied by
the different land cover types (water, urban, forest, bare soil, and vegetation)
between 2006 and 2011; it shows that the simulated changes generally matched
that of the actual changes. These results confirm that the LCC prediction model
were reasonable to describe the LCC and the proposed approach can simulate
the prediction of LCC with an acceptable accuracy. After the validation of the
proposed approach, the next step is to simulate the LCC in 2016, assuming
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Fig. 9. Belief and plausibility functions of LCCs for three different prediction models.

Fig. 10. Belief and plausibility functions of the combined input parameters and model
structure uncertainty for LCCs.

Fig. 11. Categorical distribution of the actual and simulated LCC between 2006 and
2011.
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Fig. 12. Categorical distribution of the simulated LCC between 2011 and 2016.

Fig. 13. Comparison between the land cover maps for years 2006 and 2011 and the
predicted land cover map for 2016.
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the changes between 2006 and 2011 will continue during the next time interval.
In this simulation, the LCC and input parameters acquired in 2011 were used
as input to simulate the LCC in 2016. Figure 12 shows the simulated changes
between 2011 and 2016. There have been significant LCC where urban land
covered 26,5 % of simulated changes in 2011 and 37,4 % in 2016. This could
be attributed to an increase in population by increased demands for residential
land. The resulting effect was the decrease in forest land from 27,8 % of simulated
changes in 2011 and to 20,1 % in 2016. From these results, it can be found the
replacing the land natural cover (forest land) in the study area by residential
land (urban land). Figure 13 maps the simulated future changes compared with
land cover maps for the years 2006 and 2011. These results indicate usefulness
and applicability of the proposed approach in predicting the LCC.

5 Conclusion and Discussion

Uncertainty propagation through LCC prediction model with both correlated
parameters and model structure uncertainty is presented in this paper. This
paper proposes the use of an evidence theory as the uncertainty propagation
method in LCC prediction model. The proposed approach is based on the iden-
tification of uncertainty sources of satellite image object parameters of LCC pre-
diction model. Then, the uncertain input parameters are first propagated with
considering mixed aleatory-epistemic uncertainty and correlation between para-
meters through the LCC prediction model. After that, model structure uncer-
tainty of LCC prediction are also propagated with evidence theory.

The results show the importance to propagate both aleatory and epistemic
uncertainty and to consider correlation between input parameters through LCC
prediction model. Proposed approach studied changes prediction of land cover
in Saint-Denis City, Reunion Island of next 5 years (2016) using multi-temporal
Spot-4 satellite images in 2006 and 2011. Results indicated that the urban land
covered 26,5 % of simulated changes in 2011 and 37,4 % in 2016 and the forest
land covered 27,8 % of simulated changes in 2011 and 20,1 % in 2016. From these
results, it can be found the replacing the land natural cover (forest land) in the
study area by residential land (urban land).

Results show that the LCC prediction model using 26 input parameters rep-
resenting both spectral, texture, shape, vegetation and climate characteristics,
could simulate the LCC changes with satisfactory degrees of accuracy. This study
has also demonstrated the usefulness of propagating uncertainty of input para-
meters and model structure of LCC prediction in providing land cover maps
and change information, which are very valuable for planning and management.
Additional work, however, is needed to understand how to reduce the computa-
tional cost in the proposed approach. LCC prediction model with a large num-
ber of uncertain input parameters is more complex. To optimize, it is important
to study the sensitivity of input parameters and also the sensitivity of model
structure.
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Abstract. After representing experience-based evaluations as intuition-
istic fuzzy sets (IFSs), one might expect that all of the existing similarity
measures for IFSs could be used to compare them. However, only some of
those measures seem to be suitable to do so according to a psychological
perspective which indicates that similarity measures assuming symmetry
and transitivity could not reflect properly the perceived similarity. Con-
sequently, to determine empirically their suitability for such comparisons,
several similarity measures for IFSs were tested on simulated experience-
based evaluations. This paper presents our findings about how each of
them reflected the perceived similarity among the simulated experience-
based evaluation sets.

Keywords: Experience-based evaluations · Similarity Measures · Intu-
itionistic fuzzy sets

1 Introduction

If you ask about comic books suitable for 7-year-old kids, a coworker who does
not like slang expressions might judge ‘Popeye the Sailor’ as a quite unsuitable
comic book, whereas a coworker who learned eating spinach due to “they are
the source of Popeye’s super strength” might judge it as a totally suitable one.
We deem the evaluations resulting from this kind of judgments to be experience-
based evaluations, which mainly depend on what each person has experienced or
understood about a particular concept (e.g., ‘comic books suitable for 7-year-old
kids’).

Imagine that your sister is looking for a proper comic book for your 7-year-
old nephew. If you want to know which of your coworkers could choose a comic
book on behalf of your sister, you might be interested in measuring the level
to which the evaluations given by each coworker are similar to your sister’s
evaluations. A problem in such similarity comparisons is that those experience-
based evaluations are fairly subjective and a “pseudo-matching” between them
is possible, i.e., the evaluations could match even though the evaluators have
distinct understandings of the evaluated concept [8].
c© Springer International Publishing AG 2017
J.J. Merelo et al. (eds.), Computational Intelligence, Studies in Computational Intelligence 669,
DOI 10.1007/978-3-319-48506-5 15
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Considering that an experience-based evaluation could be imprecise and
marked by hesitation, in [8] the authors proposed modeling it as an element of an
intuitionistic fuzzy set, or IFS for short [1,2]. However, the authors pointed out
that, to compare two IFSs that represent experience-based evaluation sets, the
similarity measures based on a metric distance approach such as the studied in
[12,15] might not be applicable to this case because of their implicit assumption
about symmetry and transitivity, which does not reflect judgments of similarity
observed from a psychological perspective [16].

To study empirically which of those similarity measures can be used to com-
pare such IFSs, which is the main purpose of this work, we tested the similarity
measures in comparisons between pairs of IFSs resulting from simulations of
experience-based evaluation processes. Our motivation for this study is to com-
plement the existing theoretical work within the context of IFSs to find suitable
methods that allow us to compare experience-based evaluation sets given from
persons that might have different learning experiences. As an extended version
of [10], in this paper we tested additional (configurations of) similarity measures,
which include among them a novel version of an existing directional similarity
measure.

To simulate an experience-based evaluation process, we first made use of an
algorithm that uses support vector machines [17,18] to learn how a human editor
categorizes newswire stories under a given scenario. We then made use of the
previous knowledge to evaluate the level to which other stories fit into one of
the learned categories and, thus, we obtained the simulated experience-based
evaluation sets. Each of the established learning scenarios included a training
collection that contains a certain proportion of opposite examples in relation
to the original data, which consist of manually categorized newswire stories—
by opposite example is meant that, e.g., if a story is assigned to a particular
category in the original training collection, the story will not be assigned to the
category in the training collection related to the current scenario.

An interesting aspect about testing the similarity measures in that way is that
we can observe how they reflect the perceived similarity between two experience-
based evaluation sets given from dissimilar learning scenarios. For instance, we
could test a similarity measure to observe how it reflects the perceived similar-
ity between the IFSs given by two persons who use training collections having
examples that are totally opposite to each other—here, one can anticipate that
the resulting level of similarity will be the lowest.

The remainder of this work is structured as follows: Sect. 2 presents the IFS
concept as well as the similarity measures that were tested; Sect. 3 describes how
the simulated experience-based evaluation sets were obtained; Sect. 4 describes
the test procedure that was carried out for each of the chosen similarity measures;
Sect. 5 presents the results and our findings during the testing process; and Sect. 6
concludes the paper.
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2 Preliminaries

This section presents a brief introduction to the IFS concept and shows how
an IFS is used to model an experience-based evaluation set. Additionally, it
presents some of the existing similarity measures for IFSs and introduces the
formal notation that has been used throughout the paper.

2.1 IFS Concept

In [1,2], an intuitionistic fuzzy set, IFS for short, was proposed as an extension
of a fuzzy set [19] and was defined as follows:

Definition 1 ([1,2]). Consider an object x in the universe of discourse X and
a set A ⊆ X. An intuitionistic fuzzy set is a collection

A∗ = {〈x, μA(x), νA(x)〉|(x ∈ X) ∧ (0 ≤ μA(x) + νA(x) ≤ 1)}, (1)

such that the functions μA : X �→ [0, 1] and νA : X �→ [0, 1] define the
degree of membership and the degree of non-membership of x ∈ X to the set A
respectively.

In addition, the equation

hA(x) = 1 − μA(x) − νA(x) (2)

was proposed in [1] to represent the lack of knowledge (or hesitation) about the
membership or non-membership of x to the set A.

Modeling Experience-Based Evaluations. An IFS can be used to model
an experience-based evaluation set [8]. For instance, X = {‘Popeye the Sailor’,
‘The Avengers’} could represent the ‘comic books’ that you asked your cowork-
ers to evaluate for, and A could represent a set of the ‘comic books suitable for 7-
year-old kids’. If so, the IFS A∗ = {〈‘Popeye the Sailor’, 0, 0.8〉, 〈‘The Avengers’,
0.5, 0.3 〉} might represent the evaluations given by one of your coworkers.

IFS Notation. Even though Definition 1 and the previous example show the
difference between the IFS A∗ and the set A, as it was suggested in [1] we shall
hereafter use A instead of A∗ as a notation for an IFS.

2.2 Similarity Measures for IFSs

Let A and B be two IFSs in X = {x1, · · · , xn}, a similarity measure S is usually
defined as a mapping S : X2 �→ [0, 1] such that S(A,B) denotes the level to
which A is similar to B with 0 and 1 representing the lowest and the highest
levels respectively.
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Recalling the difference between an IFS P ∗ and a set P in Definition 1, the
IFSs A and B in S(A,B) can correspond to

P ∗
@A = {〈xi, μP@A

(xi), νP@A
(xi)〉|(xi ∈ X) ∧ (0 ≤ μP@A

(xi) + νP@A
(xi) ≤ 1)},

and

P ∗
@B = {〈xi, μP@B

(xi), νP@B
(xi)〉|(xi ∈ X) ∧ (0 ≤ μP@B

(xi) + νP@B
(xi) ≤ 1)},

respectively, where P@A and P@B represent the individual understanding of P as
seen from the perspectives of the evaluators who provide the IFSs A and B. This
means that, in the context of experience-based evaluations, S(A,B) measures the
similarity between IFSs A and B with regard to individual understandings of a
common set P . For instance, if P represents a collection of ‘comic books suitable
for 7-year-old kids’, S(A,B) will measure the similarity between two experience-
based evaluation sets taking into account the individual understandings of P
that the providers of IFSs A and B might have.

The above clarification is needed because we identify two approaches in the
formulation of similarity measures for IFSs: a symmetric (or metric distance)
approach, which considers that S(A,B) = S(B,A) always holds; and a direc-
tional approach, which considers that S(A,B) = S(B,A) only holds in situations
in which the evaluators who provide the IFSs A and B have the same under-
standings of the common set behind these IFSs.

Symmetric Similarity Measures. Among others, the following symmetric
similarity measures for IFSs have been studied:

SH3D(A,B)=1 − 1
2n

n∑
i=1

(|μA(xi)−μB(xi) |+|νA(xi)−νB(xi) |+|hA(xi)− hB(xi)|
)

(3)
and

SH2D(A,B) = 1 − 1
2n

n∑
i=1

(|μA (xi) − μB (xi) | + |νA (xi) − νB (xi) |) , (4)

which are based on Hamming distance [13];

SE3D(A, B)=1 −
√√√√ 1

2n

n∑
i=1

(
(μA(xi)−μB(xi))

2+(νA(xi)−νB(xi))
2+(hA(xi)−hB(xi))

2
)

(5)

and

SE2D(A,B)=1 −
√√√√ 1

2n

n∑
i=1

(
(μA(xi)−μB(xi))

2+(νA(xi)−νB(xi))
2
)

(6)
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which are based on Euclidean distance [13]; and

SCOS(A,B)=
1
n

n∑
i=1

μA(xi)μB(xi)+νA(xi)νB(xi)+hA(xi)hB(xi)√
μA(xi)

2+νA(xi)
2+hA(xi)

2
√

μB(xi)
2+νB(xi)

2+hB(xi)
2
,

(7)
which is based on Bhattacharyas’s distance [15].

In addition, symmetric similarity measures that include the “notion of com-
plement” in their definitions have been proposed in [14]:

SSK1(A,B) = 1 − f (l(A,B), l(A,Bc)) , (8)

SSK2(A,B) =
1 − f (l(A,B), l(A,Bc))
1 + f (l(A,B), l(A,Bc))

, (9)

SSK3(A,B) =
(1 − f (l(A,B), l(A,Bc)))2

(1 + f (l(A,B), l(A,Bc)))2
(10)

and

SSK4(A,B) =
e−f(l(A,B),l(A,Bc)) − e−1

1 − e−1
. (11)

Herein, Bc is the complement of B, i.e.,

Bc = {〈xi, νB(xi), μB(xi)〉|(xi ∈ X) ∧ (0 ≤ μB(xi) + νB(xi) ≤ 1)}, (12)

l(A,B) could be the “3D version” of the Hamming distance between A and B
[12,14], i.e.,

l(A,B)=
1
2n

n∑
i=1

(|μA (xi)−μB(xi) |+|νA (xi)−νB(xi) |+|hA(xi)−hB(xi) |) ,

(13)
and

f (l(A,B), l(A,Bc)) =
l(A,B)

l(A,B) + l(A,Bc)
. (14)

Directional Similarity Measures. To the best of our knowledge, only two
directional similarity measures for IFSs have been studied. Both are briefly
described below.

The first directional similarity measure is defined by the equation

Sα(A,B) = 1 − 1
n

n∑
i=1

|difα(ai,bi)|, (15)

where α ∈ [0, 1] is called hesitation splitter,

ai =
(

μA(xi) + αhA(xi)
νA(xi) + (1 − α)hA(xi)

)
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and

bi =
(

μB(xi) + αhB(xi)
νB(xi) + (1 − α)hB(xi)

)

are vector interpretations of the IFS-elements in IFSs A and B related to xi [9],
and

difα(ai,bi) = (μA (xi) − μB (xi)) + α (hA(xi) − hB(xi)) (16)

is the spot difference between the IFS-elements corresponding to xi in A and B
respectively [9].

The second directional similarity measure is defined by

Sα
@A(A,B) = Δ@A · Sα(A,B), (17)

which is an extension of (15) based on a factor Δ@A ∈ [0, 1] that indicates the
level to which the understandings of the common set behind IFSs A and B are
in alignment. In [8], Δ@A is conceived as the weight of a connotation-differential
print (CDP) between A and B as seen from the perspective of the evaluator
who provides A—therein a CDP is defined as a sequence that represents any
difference in the understandings of the common set behind IFSs A and B. Since
such a difference in understandings is deemed to be subjective, the assembling of
a CDP will depend on either the perspective of who provides A or the perspective
of who provides B (i.e., it is directional); so will do its weight.

3 Simulation

As was mentioned in the Introduction, the aim of this work is to study empirically
which of the similarity measures presented in Sect. 2.2 can be used to compare
experience-based evaluation sets represented as IFSs. Hence, in this section we
describe both the learning and the evaluation processes that were used to obtain
the IFSs that represent the simulated experience-based evaluation sets.

3.1 Learning Process

In this part we describe the data, scenarios and algorithm that were employed
to simulate how a human editor categorizes newswire stories.

Learning Data. We made use of the Reuters Corpora Volume I (RCV1)
[11], which is a collection of manually categorized newswire stories provided by
Reuters, Ltd. Specifically, we made use of the corrected version RCV1.v2, which
is available (and fully described) in [7]. This collection has 804414 newswire sto-
ries, each assigned to one or more (sub) categories within three main categories:
Topics, Regions and Industries.

The 23149 stories contained in the training file lyrl2004 tokens train.dat of
that collection were used to learn how to categorize newswire stories into one or



Suitable Similarity Measures to Compare Experience-Based Evaluations 297

more of the following categories from Topics: ECAT, E11, E12, GSCI, GSPO,
GTOUR, GVIO, CCAT, C12, C13, GCAT, G15, GDEF, GDIP, GDIS, GENT,
GENV, GFAS, GHEA and GJOB. The interested reader is referred to [7] for a
full description of these categories.

Learning Scenarios. We established the following scenarios to learn how to
categorize newswire stories into each of the chosen categories:

– R0 : All the stories in the training data preserve the assignation of the training
category in its original state.

– R20, R40, R60, R80, R100 : The assignation of the training category is opposite
to its original state in the 20, 40, 60, 80 and 100% of the stories in the training
data respectively. The assignation of the training category in the remainder of
the stories is preserved. The selection of the stories that do not preserve the
original state is made through a simple random sampling.

For instance, consider the story with code 2286, which was assigned to the cate-
gory ECAT. In the scenario R20, if the training category is ECAT and the story
is selected to change its category, the story will be considered as a nonmember
of ECAT.

Learning Algorithm. We made use of an algorithm based on support vector
machines, or SVM for short [17,18], which have been successfully used in sta-
tistical learning theory. Specifically, we made use of the application of SVMs for
the text categorization problem proposed in [6], which has demonstrated superior
results to deal with such a problem [7].

In the context of the text categorization problem, the words in a newswire
story are the features that determine whether the story belongs or not to a
category. This follows an intuition in which, according to his/her experience, a
person focuses on the words in a document to decide whether it fits or not into
a given category.

To use the SVM algorithm, each story must be modeled as a vector whose
components are the words in the story. A story might contain words such as ‘the’,
‘of’ or ‘at’ that have a negligible impact on the categorization decision, or words
such as ‘learning’, ‘learned’ or ‘learn’ that have a common stem. To simplify the
vector representation, such words are usually filtered out and stemmed by using
different algorithms. Hence, for the sake of reproducibility of the simulation, we
made use of the stories in the training file lyrl2004 tokens train.dat [7], which
already have reduced and stemmed words. For example, the story with code
2320 has the following words: tuesday, stock, york, seat, seat, nys, level, million,
million, million, sold, sold, current, off, exchang, exchang, exchang, bid, prev,
sale, mln.

Since the impact of the words on the categorization decision could be differ-
ent, a weight should be assigned to each word. Thus, to compute the (initial)
weight of a word in a story (or document), as it was suggested in [7], we applied
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the equation

weight(f, x) = (1 + lnn(f, x)) ln (|X0|/n(f,X0)) , (18)

which is a variant of tf-idf weighting given in [3] where X0 is the training collec-
tion (i.e., the collection of stories in lyrl2004 tokens train.dat), x ∈ X0 is a story,
f is a word in x, n(f, x) is the number of occurrences of f in x, n(f,X0) is the
number of stories in X0 that contain f , and |X0| is the number of stories in X0

(i.e., |X0| = 23149). For example, the weight of the word exchang in the story
with code 2320 is given by weight(exchang, 2320) = (1 + ln 3) ln (23149/2485) =
4.6834.

After computing the weight of each word in a story with code i, say xi, we
represented xi as a vector xi = βi,1f̂1 + · · · + βi,|F |f̂|F | such that:

– F is a dictionary having all the distinct words in the training collection X0;
– |F | is the number of words in F (for the chosen training collection, |F | =

47152);
– f̂k is a unit vector that represents an axis related to a word fk ∈ F (i.e., f̂k

belongs to a multi-dimensional feature space in which each dimension corre-
sponds to a word fk ∈ F ); and

– βi,k = weight(fk, xi) is the weight of fk in xi (if fk is not present in the story,
βi,k will be fixed to 0).

Since the stories may have different number of words, each βi,k in xi was divided
by ‖xi‖ =

√
xi · xi, i.e., xi was transformed to a unit vector [7].

Idea Behind the SVM Algorithm. So far we have described how each story xi in
the training collection X0 was represented by a vector xi. To describe how we
made use of those vectors (and the resulting ones later on), in what follows we
briefly explain the idea behind the SVM algorithm (see [4] for a tutorial about
SVM).

In Fig. 1 the vectors corresponding to stories that fit into a given category
(i.e., positive examples) are depicted with gray-circle heads, while the vectors
that do not fit into the category (i.e., negative examples) are depicted with

H− H H+

w

m

b

d+d−

Fig. 1. Idea behind the SVM algorithm.
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black-circle heads. The hyperplane H separates the positive from the negative
examples—here H is defined by w ·x+ b = 0, where w is a vector perpendicular
to H, x is a point lying on H, and b is the perpendicular distance between H
and the origin. The hyperplane H+ is parallel to H and contains the closest
positive example to it. The hyperplane H− is also parallel to H and contains
the closest negative example to it. The margin m = d+ + d− between H+ and
H− is the largest. The support vectors are the vectors whose heads lay either on
H− or H+.

To find the hyperplane H that maximizes the margin between H+ and H−

the following quadratic programming problem should be solved

Λ =
n∑

i=1

λi − 1
2

n∑
i=1,j=1

λiλjyiyjxi · xj , (19)

where xi and xj are the vectors corresponding to stories in the training collection,
yi (or yj) denotes whether the xi (or xj) fits (yi = 1) or not (yi = −1) into the
category, λi, λj ≥ 0, and n is the number of stories in the training collection.
The solution is given by both

w =
n∑

k=1

λkykxk (20)

and
b = yk − w · xk, (21)

for any xk such that λk > 0.
To compute both (20) and (21), we made use of the package SVMLight Ver-

sion V6.02 [5]. We issued the command “svm learn.exe -c 1 svmTrainingFile
svmModelFile”, where svmTrainingFile is an input file that contains the train-
ing vectors for a category under a given scenario, and svmModelFile is an out-
put file that contains the solution (or model) of the scenario-category learning
process. Using the 6 scenarios and 20 categories described above, we obtained
120 scenario-category models during this learning process—hereafter a model
will be referred to using the nomenclature scenario-category.

3.2 Evaluation Process

Consider a collection of newswire stories X. To evaluate the level to which a
newswire story x ∈ X fits into a category, say ECAT, under a given scenario,
say R20, we use the R20-ECAT model, which represents the experience (or
knowledge) acquired after the previous learning process. After evaluating all the
newswire stories in X, we obtain an evaluation set for X. This evaluation set
corresponds to the simulated experience-based evaluation set given by a person
who learned the concept ECAT using the training data specified in the scenario
R20.

The data and the process that were utilized to generate such simulated
experience-based evaluation sets are described below.
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Evaluation Data. We made use of the first 12500 newswire stories in each of
the following files from RCV1.v2 [7]:

– lyrl2004 tokens test pt0.dat,
– lyrl2004 tokens test pt1.dat,
– lyrl2004 tokens test pt2.dat and
– lyrl2004 tokens test pt3.dat.

With these 50000 stories, we built 1000 50-story collections.

Obtaining an IFS as a Result of an Evaluation Process. Let Xk be one of
the 50-story collections that constitute the evaluation data. To evaluate the level
to which a story xi ∈ Xk fits into a category, say C, under a given (learning)
scenario, say LS, we made use of the LS-C model resulting from the previous
learning process to obtain an IFS-element 〈xi, μC(xi), νC(xi)〉 as follows.

First, we represented xi as a vector xi = βi,1f̂1 + · · · + βi,|F |f̂|F | according
to the procedure described in the previous section, where X0 corresponds to the
training collection in the scenario S.

Then, we made use of w = ω1f̂1 + · · · + ω|F |f̂|F | and b in the S-C model to
figure out μC(xi) and νC(xi) by means of the equations

μC(xi) = μ̌C(xi)/σ (22)

and
νC(xi) = ν̌C(xi)/σ (23)

respectively, where

μ̌C(xi) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(∑|F |
j=1 βi,jωj

)
+|b|

‖xi‖‖w‖ : (βi,jωj > 0) ∧ (b < 0) ;
∑|F |

j=1 βi,jωj

‖xi‖‖w‖ : (βi,jωj > 0) ∧ (b ≥ 0) ;

0 : otherwise;

(24)

ν̌C(xi) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(∑|F |
j=1 |βi,jωj |

)
+b

‖xi‖‖w‖ : (βi,jωj < 0) ∧ (b > 0)
∑|F |

j=1 |βi,jωj |
‖xi‖‖w‖ : (βi,jωj < 0) ∧ (b ≤ 0) ;

0 : otherwise;

(25)

and
σ = max (1, μ̌C(xi) + ν̌C(xi)) ,∀xi ∈ Xk. (26)

Finally, after computing all the IFS-elements for each xi ∈ Xk, we obtained
an IFS that represents the simulated experience-based evaluations for the stories
in Xk according to what was learned (or experienced) about the category C
under the scenario LS.

Since we built 1000 50-story collections, we obtained 1000 IFSs for each
scenario-category model. We made use of the notation C@LS(Xk) to denote an
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Table 1. IFSs that represent the simulated experience-based evaluations for the stories
in each Xk ∈ {X1, · · · , X1000} according to what was learned about category E11 under
the scenarios R0, R20, R40, R60 and R100 respectively.

E11

Scenario 50-story Collections

X1 · · · Xk · · · X1000

R0 E11@R0(X1) · · · E11@R0(Xk) · · · E11@R0(X1000)

R20 E11@R20(X1) · · · E11@R20(Xk) · · · E11@R20(X1000)

R40 E11@R40(X1) · · · E11@R40(Xk) · · · E11@R40(X1000)

R60 E11@R60(X1) · · · E11@R60(Xk) · · · E11@R60(X1000)

R80 E11@R80(X1) · · · E11@R80(Xk) · · · E11@R80(X1000)

R100 E11@R100(X1) · · · E11@R100(Xk) · · · E11@R100(X1000)

IFS that represents the simulated experience-based evaluations for the stories in
Xk according to what was learned about category C under a scenario LS. For
example, Table 1 shows the IFSs that represent the simulated experience-based
evaluations for the stories in each Xk ∈ {X1, · · · ,X1000} according to what was
learned about category E11 under the scenarios R0, R20, R40, R60 and R100
respectively.

Considering that we chose 20 categories and built 6 scenarios during the
learning phase, we obtained a total of 120000 IFSs during this phase.

4 Testing

In this section we describe how the similarly measures presented in Sect. 2.2 were
tested with the IFSs that represent simulated experience-based evaluation sets.

4.1 A Point of Reference for the Perceived Similarity

Consider a scenario-category model LS-C represented by both w and b according
to the Eqs. (20) and (21) respectively (see Sect. 3.1). Consider then a story xi ∈
Xk represented by xi, where Xk is one of the 50-story collections in the evaluation
data (see Sect. 3.2). Consider finally a collection Yk = {yi|(yi = w ·xi + b)} such
that yi is the SVM-based evaluation of story xi ∈ Xk fitting into the category
C under the scenario LS. In this context, the decision about the fittingness of
the story xi into the category C under the scenario LS will depend on yi: when
yi > 0, the decision will be “xi fits into C;” when yi < 0, the decision will be
“xi does not fit into C;” and when yi = 0, no decision will be taken. A visual
interpretation of this decision process is observable in Fig. 1: when yi > 0 the
head of the vector xi corresponding to story xi will be on the H+-side, i.e., it
will have a gray-circle head; when yi < 0 the head of xi will be on the H−-side,
i.e., it will have a black-circle head; and when yi = 0 the head of xi will be on H
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(see [7] for more details about the influence of this decision process in the text
categorization problem).

Now consider the collections Yk@L1 and Yk@L2 having SVM-based evaluations
under scenarios L1 and L2 respectively. Consider also yi@L1 ∈ Yk@L1 and yi@L2 ∈
Yk@L2. In this situation, when

((yi@L1 < 0 ∧ yi@L2 < 0) ∨ (yi@L1 > 0 ∧ yi@L2 > 0) ∨ (yi@L1 = 0 ∧ yi@L2 = 0))

is true, an agreement on decision about the fittingness of story xi between the
evaluations given under scenarios L1 and L2 occurs.

We made use of the agreements on decisions between Yk@L1 and Yk@L2 to
obtain an agreement-on-decision ratio, AoD for short, which is expressed by

AoD(Yk@L1, Yk@L2) = n/N, (27)

where n represents the number of agreements on decision between Yk@L1 and
Yk@L2, and N represents the number of stories in Xk. Since the AoD ratio
denotes how similar the decisions are, we deemed it to be an indicator of the
perceived similarity between the evaluations given by two persons that learned
(or experienced) C under L1 and L2 respectively.

4.2 Testing Procedure and Settings

As was mentioned in the Introduction, an experience-based evaluation mainly
depends on what an evaluator has experienced or learned about a particular con-
cept. Thus, one could expect that the level of similarity between the evaluation
sets given by two evaluators who learned a concept under the same (learning)
scenario will be greater than or equal to the level of similarity between the evalu-
ation sets given by two evaluators who learned the same concept under different
scenarios. For instance, consider three evaluators: P , Q and R. While P and
Q learned about the category E11 under the same scenario R0, R learned so
under the scenario R80. Consider also that the IFSs E11@P (Xk), E11@Q(Xk)
and E11@R(Xk) represent the experience-based evaluation sets about the fit-
tingness of the stories in the 50-story collection Xk into category E11 given by
P , Q and R respectively. In this context, one could expect that the similarity
between E11@P (Xk) and E11@Q(Xk) will be greater than the similarity between
E11@P (Xk) and E11@R(Xk).

We made use of the above intuition to test the similarity measures presented
in Sect. 3.2. Since we chose the AoD ratio as an indicator of the perceived sim-
ilarity, we first tested it to observe how the agreement on decisions between
two SVM-based evaluation sets is affected according to their respective learning
scenarios. We then tested the similarity measures, some of them with different
configurations.

Testing the Agreement-on-Decision Ratio. Again, one could expect that
the AoD ratio between two SVM-based evaluation sets resulting from the same
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scenario will be greater than the AoD ratio between two SVM-based evaluation
sets resulting from distinct scenarios. Thus, we considered the question: Is there
sufficient evidence in the evaluation data to suggest that the mean AoD ratio is
different after altering a given percentage of the training data? To answer this,
for each category and for each 50-story collection, we obtained the AoD ratio
between the SVM-based evaluation set given under scenario R0 (i.e., R0 is a
referent scenario) and each of the SVM-based evaluation sets given under the
scenarios R0, R20, R40, R60, R80 and R100 respectively (see Algorithm 1).

Algorithm 1. Obtaining AoD ratios.

Require: ChosenCategories {see Section 3.1}
Require: LearningScenarios {see Section 3.1}
Require: 50storyCollections {see Section 3.2}
Require: SV MEvals {see Section 4.1}
1: Z ← ∅ {resulting ratios}
2: for all C ∈ ChosenCategories do
3: for all Xk ∈ 50storyCollections do
4: Yk@R0 ← SV MEvals[Xk][R0][C]
5: for all LS ∈ LearningScenarios do
6: Yk@LS ← SV MEvals[Xk][LS][C]
7: r ← AoD(Yk@R0, Yk@LS)
8: Z[C][LS][Xk] ← r
9: return Z

Testing the Similarity Measures. To test the similarity measures, we com-
puted the level of similarity between the IFS given under scenario R0 and each
of the IFSs given under the scenarios R0, R20, R40, R60, R80 and R100 respec-
tively by means of each of the established similarity measures. We did so through
the steps described in Algorithm 2. As could be noticed, the computation was
performed for each category, for each 50-story collection, for each scenario and
for each similarity measure. For readability, hereafter we shall use the acronym
placed as subscript in each of the given similarity measures to refer to each of
them. For instance, we shall use H2D to refer to SH2D (see Eq. 6).

Since two of the similarity measures presented in Sect. 2.2, namely Sα (see
Eq. 15) and its extended version (see Eq. 17), needed to be configured, we applied
to them the configurations described below before the test.

The similarity measure Sα was configured with hesitation splitters α = 0, 0.5
and 1—we shall use the label VB-α to refer to each of the possible configurations
of this measure.

With respect to the extended version of Sα, two different methods were
applied to compute the Δ@A factor, i.e., two forms of this measure were used
during the test.
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Algorithm 2. Testing similarity measures.

Require: SimMeasures {see Sections 2.2 and 4.2}
Require: ChosenCategories {see Section 3.1}
Require: LearningScenarios {see Section 3.1}
Require: 50storyCollections {see Section 3.2}
Require: IFSEvals {see Section 3.2}
1: Z ← ∅ {resulting levels}
2: for all C ∈ ChosenCategories do
3: for all Xk ∈ 50storyCollections do
4: C@R0(Xk) ← IFSEvals[Xk][R0][C]
5: for all LS ∈ LearningScenarios do
6: C@LS(Xk) ← IFSEvals[Xk][LS][C]
7: for all S ∈ SimMeasures do
8: l ← S(C@R0(Xk), C@LS(Xk))
9: Z[C][LS][Xk][S] ← l

10: return Z

0

+δ

−δ

k = 5

k = 5

cdpH

cdpL

Fig. 2. Obtaining a CDP and its weight. The bars represent the spot differences
between the elements of IFSs A and B. The CDPs for the k-highest and the k-lowest
IFS-elements according to A’s perspective are denoted by cdpH and cdpL respectively.

In the first form, labeled XVB-α-w, Δ@A was computed by means of the
method weightCDP (A,B, α,w), in which A and B are the IFSs in the com-
parison, α is the hesitation splitter, and w ∈ [0, 1] is a value that allows us to
obtain a CDP (see Sect. 3.2) between A and B according to the wide of the
average gap between the membership and non-membership values as seen from
the perspective of who provides A. This method involves the following steps:

1. Obtain δ ∈ [0, 1] for IFS A through

δ =
w

n

n∑
i=1

(μA(xi) + νA(xi)). (28)

2. Compute the spot differences among the IFS-elements in A and B using (16).
3. Order the IFS-elements in A by descending membership values and then by

ascending non-membership values.
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4. Fix k = 0.1n (i.e., k = 5) and obtain the connotation-differential mark-
ers (i.e., �|, �| and �| [9]) for the k-highest and the k-lowest IFS-elements in
the arranged IFS A (see Fig. 2). For a spot difference s, the marker will be:
�| when |s| ≤ δ; �| when s > δ; and �| when s < −δ.

5. Build the CDPs cdpH and cdpL with the markers corresponding to k-highest
and the k-lowest IFS-elements respectively (see Fig. 2).

6. Fix v[�|] = 1, v[�|] = 0.01 and v[�|] = 0.01, and compute Δ@A by means of

Δ@A = max

⎛
⎝1

k

∑
m∈cdpH

v[m],
1
k

∑
m∈cdpL

v[m]

⎞
⎠ (29)

In the second form, labeled XVBr-α, Δ@A was computed through a novel
method, called spotRatios, which involves the following steps:

1. Fix k = 0.1n (i.e., k = 5).
2. Order the IFS-elements in A by descending membership values and then by

ascending non-membership values. After that, put the top k into a collection
H and the bottom k in a collection L.

3. Compute Δ@A by means of

Δ@A =
1
2k

(
k∑

ai∈H

spotRatio(ai,bi, α) +
k∑

ai∈L

spotRatio(ai,bi, α)

)
, (30)

where ai and bi are vector interpretations of the IFS-elements in A and B
related to xi (see Sect. 2.2), α is the hesitation splitter, and spotRatio is
defined by Algorithm 3.

5 Results and Discussion

This section presents the results after following the test conditions described in
the previous section.

5.1 Agreement-on-Decision Ratio as an Indicator of the Perceived
Similarity

To answer the question is there sufficient evidence in the evaluation data to
suggest that the mean AoD ratio is different after altering a given percentage of
the training data?, we first made use of the collection resulting of Algorithm 1
to compute the averages of the AoD ratios per scenario-category. We then ran
the t-test for the null hypothesis “the average of the AoD ratio is the same after
altering the r% of the training data” in contrast to the alternative one “the
average of the AoD ratio is different after altering the r% of the training data”
according to r given in each scenario (see Table 2).
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Algorithm 3. spotRatio(ai,bi, α).

1: r ← 0.5 {default value}
2: aμ ← μA(xi) + αhA(xi)
3: aν ← νA(xi) + (1 − α)hA(xi)
4: bμ ← μB(xi) + αhB(xi)
5: bν ← νB(xi) + (1 − α)hB(xi)
6: oμ ← νA(xi) + αhA(xi) {oi is the vector representation of the complement of the

IFS-element 〈xi, μA(xi), νA(xi)〉 represented by ai }
7: oν ← μA(xi) + (1 − α)hA(xi)
8: Aao ← aμoν − aνoμ {Aao is the area of the paralellogram formed by ai and oi}
9: Abo ← bμoν − bνoμ {Abo is the area of the paralellogram formed by bi and oi}

10: if |Aao| > 0 then
11: r ← Abo/Aao

12: if r > 0 then
13: r ← min(1, r)
14: else
15: r ← 0
16: return r

The results in Table 2 show that, for the scenarios R20, R40, R60, R80 and
R100, the t-values were statistically significant (p < 0.05). Consequently, we can
say that there is sufficient evidence in the evaluation data to suggest that the
average of the AoD ratio is different after altering the 20, 40, 60, 80 or 100% of
the training data.

Recalling that we deemed the AoD ratio to be an indicator of the perceived
similarity, we can confidently expect that it will be affected by the different
learning scenarios established in the simulation. This can be observed in the
bivariate plot depicted in Fig. 3, which shows a strongly negative (or inverse)
relationship (R = −0.9741) between the averages of the AoD ratios and the
percentage of opposites included in the learning scenarios.

5.2 How Each Similarity Measure Reflects the Perceived Similarity

To observe how each of the configurations of similarity measures given in Sect. 4.2
reflects the perceived similarity between the simulated IFSs, we first made use
of the collection resulting of Algorithm 2 to compute the averages of the levels
of similarity per scenario-category. Then, we obtained linear models for the rela-
tionships between each one of those averages and the percentage of opposites
considered in each scenario. After that, each of the resulting models was con-
trasted with the linear model corresponding to the AoD ratio. As an indicator
of how well a similarity measure reflects the perceived similarity, we computed
a manifest index, which is defined by

m = (aSM/aAoD)(bSM/bAoD)(R2
SM/R2

AoD), (31)

where aSM and aAoD are the slopes, bSM and bAoD are the intercepts, and
R2

SM and R2
AoD are the R-statistics in the linear models corresponding to the
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Table 2. Averages of the AoD ratios per scenario-category, and t-test for the null
hypothesis “the average of the AoD ratio is the same after altering the r% of the
training data” according to r given in each scenario (e.g., r = 20 in scenario R20 ),
where R0 (r = 0) is the referent scenario.

Category Scenarios

R20 R40 R60 R80 R100

C12 0.7292 0.5900 0.4757 0.2897 0.0001

C13 0.7385 0.6091 0.4281 0.2766 0.0002

CCAT 0.9372 0.7505 0.2711 0.0663 0.0001

E11 0.6431 0.5740 0.4722 0.3519 0.0003

E12 0.7156 0.5792 0.4796 0.3080 0.0001

ECAT 0.8187 0.6273 0.4052 0.1853 0.0002

G15 0.7186 0.5954 0.4781 0.3039 0.0002

GCAT 0.9314 0.7472 0.2690 0.0661 0

GDEF 0.6515 0.5717 0.4668 0.3602 0.0002

GDIP 0.7433 0.5990 0.4587 0.2672 0.0002

GDIS 0.7229 0.5951 0.4729 0.3022 0.0002

GENT 0.7066 0.5796 0.4802 0.3209 0.0002

GENV 0.6941 0.6009 0.4812 0.3248 0.0004

GFAS 0.6763 0.5787 0.4882 0.3457 0.0002

GHEA 0.7016 0.5850 0.4636 0.3451 0.0003

GJOB 0.7359 0.5883 0.4542 0.2886 0.0003

GSCI 0.6899 0.5854 0.4844 0.3424 0.0004

GSPO 0.8208 0.6508 0.4130 0.1962 0

GTOUR 0.5383 0.5197 0.4866 0.4663 0.0005

GVIO 0.7551 0.6368 0.4749 0.2796 0.0002

Mean 0.7334 0.6082 0.4452 0.2844 0.0002

stdDev 0.0913 0.0551 0.0643 0.0951 0.0001

N 20 20 20 20 20

df 19 19 19 19 19

t-value 13.06 31.80 38.59 33.67 34025.85

p-value 0 0 0 0 0

similarity measure SM and the AoD ratio respectively. For readability, we shall
use hereafter SM-vs.-OP to denote the relationship between the averages of the
levels (of similarity) resulting from the (configuration of) similarity measure SM
and the percentage of opposites OP.

The results in Table 3 show that, in contrast to what happens with the
AoD ratio, the averages of the levels of H2D, H3D, E2D, E3D, COS, VB-0,
VB-0.5 and VB-1 are hardly affected by the variation of the percentage of
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opposites—notice the broad difference among the slopes of the linear models
corresponding to these similarity measures and the slope of the linear model
corresponding to the AoD ratio. By way of illustration, if we use the resulting
model for COS (i.e., y = −0.0004x + 0.9831) to compute the level to which the
average of evaluations given under the scenarios R0 and R100 are similar, we
will obtain y = 0.9827 as a result—since R100 contains the 100 % of opposite
training examples in relation to R0, we fix x = 1 to make this computation. As
noticed, the computed level differs markedly from the result obtained for AoD
(i.e., y = 0.0469). Such a remarkable difference is reflected by the lowest mani-
fest index (i.e., m = 0) and is observable in Fig. 4(c), which shows the average
of the similarity levels per scenario vs the percentage of opposites included in
each scenario.
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Fig. 3. Bivariate plot between the averages of the AoD ratios and the percentage of
opposites included in the learning scenarios. The relationship is represented by means of
a linear model and described by the statistic R (Pearson Product Moment Correlation).

Regarding the averages of the levels of SK1, SK2, SK3 and SK4, the results
suggest that the levels computed with SK1, SK2 and SK4 are fairly affected by
the variation of the percentage of opposites. Notice that the correlation indices
for SK1-vs.-OP, SK2-vs.-OP and SK4-vs.-OP (i.e., R = −0.8632, R = −0.8319
and R = −0.8463 respectively) denote fairly strong negative relationships that
are roughly comparable with the strongly negative relationship (R = −0.9741)
in AoD-vs.-OP. Moreover, Figs. 4(e), (f) and (h) show that SK1, SK2 and SK4
reflect properly the perceived similarity between the evaluations given under the
scenarios R0 and R100 in contrast to, e.g., H3D, COS or VB-0.5 (see Figs. 4(b),
(c) and (d)). However, these similarity measures seem to reflect more or less
properly the perceived similarity between the evaluations given under the sce-
narios R0 and, e.g., R20 or R80, which affects the values of the m-indices related
to their linear models.

With respect to the averages of the levels of the form XVB-α-w of (17), the
results in Table 3 show that the levels computed with two of them, namely XVB-
0-0.05 and XVB-0-0.1, are fairly affected by the variation of the percentage of
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Table 3. Linear models and m-indices for each SM-vs.-OP representing the relation-
ship between the averages levels that result from the (configuration of) similarity mea-
sure SM and the percentage of opposites OP.

SM SM-vs.-OP (linear model: y = ax + b) m-index

slope (a) intercept (b) R2

H2D −0.0139 0.9939 0.4128 0.0066

H3D −0.0138 0.9852 0.1442 0.0023

E2D −0.0171 0.9920 0.4189 0.0082

E3D −0.0167 0.9853 0.2034 0.0039

COS −0.0004 0.9831 0 0

SK1 −0.7302 0.8666 0.7451 0.5471

SK2 −0.7287 0.7547 0.6920 0.4416

SK3 −0.7242 0.6041 0.5242 0.2661

SK4 −0.7298 0.7848 0.7163 0.4761

VB-0 −0.0133 0.9955 0.4527 0.0070

VB-0.5 −0.0133 0.9955 0.4528 0.0070

VB-1 −0.0144 0.9922 0.3170 0.0053

XVB-0-0.05 −0.7318 0.7831 0.6871 0.4569

XVB-0.5-0.05 −0.6738 0.6999 0.5974 0.3269

XVB-1-0.05 −0.6388 0.6185 0.4666 0.2139

XVB-0-0.1 −0.6587 0.9307 0.6560 0.4666

XVB-0.5-0.1 −0.6240 0.8358 0.6878 0.4162

XVB-1-0.1 −0.5727 0.6978 0.4805 0.2228

XVB-0-0.2 −0.4218 1.0241 0.4575 0.2293

XVB-0.5-0.2 −0.4657 1.0029 0.5944 0.3221

XVB-1-0.2 −0.4335 0.8321 0.4414 0.1847

XVBr-0 −0.7368 0.8069 0.6740 0.4650

XVBr-0.5 −0.7971 0.8984 0.8499 0.7062

XVBr-1 −0.7368 0.8069 0.6740 0.4650

AoD −0.9299 0.9768 0.9488 1

opposites as well. In contrast to SK1, SK2 and SK4, Figs. 4(i) and (j) suggest
that XVB-0-0.05 and XVB-0-0.1 reflect more properly the perceived similarity
between the evaluations given under the scenario R0 and the evaluations given
under the scenarios R20, R40 or R60. However, the figures also suggest that
both measures do not reflect so properly the perceived similarity between the
evaluations given under the scenarios R0 and R80 or R100—notice that the
average of the similarity levels between R0 and R80 is greater that the average
of the similarity levels between R0 and R60.
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(a) AoD (b) H3D (c) COS (d) VB-0.5

(e) SK1 (f) SK2 (g) SK3 (h) SK4

(i) XVB-0-0.05 (j) XVB-0-0.1 (k) XVBr-0 (l) XVBr-0.5

Fig. 4. Averages of the similarity levels per scenario versus the percentage of opposites
included in each scenario.

Since the form XVB-α-w is based on the weight of a CDP and the computa-
tion of this weight was based on the w-parameter in our testing procedure (see
Sect. 4.2), we performed additional tests to observe the influence of this para-
meter on the quality of the results of this similarity measure. In such additional
tests, we configured (17) with α = 0 and w = 0.05, 0.1, 0.15, · · · , 1 and used the
same nomenclature (i.e., XVB-α-w) to label each configuration. Figure 5 shows
how the m-index corresponding to the linear model for each XVB-0-w-vs-OP
relationship is affected by the w-parameter. As noticed, the peak m-index is
reached at w = 0.1 and is projected to decline after that point. Recalling from
Sect. 4.2, the w-parameter determines the wide of the average gap between the
membership and non-membership values, which is then used to build a CDP
for the IFSs in the similarity comparison as seen from the perspective of the
person who provides the referent IFS. This means that, in this scenario, a spot
difference with a magnitude less than or equal to the 10% of the average gap
between the membership and non-membership values (see Sects. 2.2 and 4.2) will
roughly reflect a similar understanding (or knowledge) of the evaluate concept.
This result seems to support the idea behind a CDP, which suggests that “a
difference in understanding of a concept could be marked by a difference in one
or more evaluations” [8].
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Fig. 5. Influence of the w-parameter on the quality of the m-index for XVB-0-w.

Concerning the averages of the levels of the form XVBr-α of (17), the
results reported in Table 3 show that the levels computed by XVBr-0.5 are
strongly affected by the variation of the percentage of opposites. As noticed,
the correlation index for XVBr-0.5-vs.-OP (R = −0.9219) denote a very strong
inverse relationship that is comparable with the correlation index for AoD-vs.-OP
(R = −0.9741). In addition, Fig. 4(l) shows that the averages of the similarity
levels between the evaluations given under scenario R0 and the given under the
other scenarios are well reflected by XVBr-0.5, which is indicated by the best
m-index reported (i.e., m = 0.7062). However, with respect to the levels com-
puted by XVBr-0 and XVBr-1, the results suggest that such levels are affected
by the variation of the percentage of opposites but not as strong as XVBr-0.5. A
potential weakness of XVBr-0 when compared to XVBr-0.5 is shown in Fig. 4(k).
Notice that, in contrast to XVBr-0.5, the average of the similarity levels com-
puted by XVBr-0 between R0 and R20 is a little less than the average computed
between R0 and R40.

5.3 Discussion

The results obtained suggest that one of the configurations of the similarity mea-
sure (17), namely XVBr-0.5, overcomes the other (configurations of) similarity
measures when dealing with similarity comparisons among the simulated IFSs.
However, it was found that other (configurations of) similarity measures such
as XVB-0-0.1 or SK1 can be (partially) effective in comparisons between IFSs
resulting from particular scenarios. For instance, SK1 seems to reflect prop-
erly the perceived similarity between the evaluations resulting from completely
opposite understandings but it reflects in a lesser extent the perceived similar-
ity among the evaluations resulting from roughly opposite (or slightly similar)
understandings.

A possible explanation for those results might be that, by means of the
factor Δ@A, the configurations of the similarity measure (17) take into account
what is understood as a qualitative difference between two IFS-elements from the
perspective of the evaluator who provides the IFS A. This situation is observable
in the two evaluated forms of this measure: in the form XVB-α-w, when both



312 M. Loor and G. De Tré

the magnitude and the direction of a spot difference (see Sect. 2.2), as well as
the average gap between the membership and non-membership components of
the IFS-elements in A are used in the computation of Δ@A (see Eq. 29); and
in the form XVBr-α, when both the magnitude and the direction of a vector
product ai × oi, in which ai is a vector representing an IFS-element in A and
oi is a vector representing the complement of that IFS-element, are used as
points of reference in the (internal) computation of Δ@A (see Algorithm 3).
Even though both forms try to detect and quantify any qualitative difference
between two IFS-elements, the results suggest that the form XVBr-α applies a
more effective method. Notice that, in contrast to the form XVB-α-w, the form
XVBr-α does not need a threshold value to quantify a difference (or similarity)
in understandings, i.e., the parameter w is not necessary. Notice also that the
method applied by XVBr-α seems to agree in some extent with the “notion of
complement” used in the definitions of SK1, SK2, SK3 and SK4.

Another possible explanation for the results might be that a gap between
the membership and non-membership components is contextually related to the
categorization decision (see Sects. 3.2 and 4.1), which is deemed to be a point of
reference for the perceived similarity through the agreement on decision ratio.
Hence, a similarity measure such as (17) that takes into account the aforesaid
gap could reflect more adequately the similarity perceived from the perspective
of who makes the categorization decision.

Even though these results are based on simulated IFSs that use a manually
categorized newswire stories, they need to be interpreted with caution because
of the dependency of the IFSs with the learning algorithm and the (text catego-
rization) context that were chosen for the simulations. Consequently, conducting
simulations with other learning algorithms and experiments with real evaluators
is recommended and subject to further study.

6 Conclusions

In this work we have conducted an empirical study that aims to determine which
similarity measures are suitable to compare experience-based evaluations (XBEs)
represented as intuitionistic fuzzy sets (IFSs) [1,2]. Herein by ‘experience-based
evaluation’ we mean a judgment that depends on what a person has experienced
or understood about a particular concept or topic.

During the study, several similarity measures for IFSs were used in compar-
isons of simulated XBEs, which were obtained after learning through a support
vector learning algorithm [17,18] how human editors categorize newswire stories
under different scenarios. This made it possible to assess the level to which each
similarity measure reflects the perceived similarity in comparisons of XBEs that
might be given by persons with different backgrounds.

Taken together, the results obtained suggest that the studied similarity mea-
sures could be categorized as suitable, partially suitable and unsuitable while
comparing XBEs.

The first category includes an improved version of the similarity measure
proposed in [8], which uses a new method to quantify what is understood as a
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qualitative difference between two IFS-elements. A configuration of this measure
seem to reflect well the perceived similarity among the simulated XBEs and,
moreover, it overcomes the other tested similarity measures.

The second category is constituted by the similarity measures including the
“notion of complement” in their definitions [12,14], as well as by some configu-
rations of the original version of the similarity measure proposed in [8]. These
measures seem to be (partially) effective in comparisons between XBEs resulting
from particular scenarios.

The last category consists of similarity measures such as the proposed in
[9] that could not reflect the perceived similarity between XBEs resulting from
opposite scenarios.

Despite the results seem to be significant for choosing a proper similarity mea-
sure to compare human XBEs represented as IFSs, they need to be interpreted
with caution because of the dependency of the simulated XBEs with the learning
algorithm and the context that were chosen for the simulations. Hence, further
studies with evaluations provided by human evaluators are recommended.
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11. Rose, T., Stevenson, M., Whitehead, M.: The reuters corpus volume 1-from yes-
terday’s news to tomorrow’s language resources. In: LREC, vol. 2, pp. 827–832
(2002)

12. Szmidt, E.: Similarity measures between intuitionistic fuzzy sets. Distances and
Similarities in Intuitionistic Fuzzy Sets. Studies in Fuzziness and Soft Computing,
vol. 307, pp. 87–129. Springer, Cham (2014)

13. Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets
Syst. 114(3), 505–518 (2000)

14. Szmidt, E., Kacprzyk, J.: A concept of similarity for intuitionistic fuzzy sets and
its use in group decision making. In: IEEE International Conference on Fuzzy
Systems, pp. 1129–1134 (2004)

15. Szmidt, E., Kacprzyk, J.: Geometric similarity measures for the intuitionistic fuzzy
sets. In: 8th conference of the European Society for Fuzzy Logic and Technology
(EUSFLAT-13), pp. 840–847. Atlantis Press (2013)

16. Tversky, A.: Features of similarity. Psychol. Rev. 84(4), 327 (1977)
17. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York

(1995)
18. Vapnik, V.N., Vapnik, V.: Statistical Learning Theory, 1st edn. Wiley, New York

(1998)
19. Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)



Implementing Adaptive Vectorial Centroid
in Bayesian Logistic Regression for Interval

Type-2 Fuzzy Sets

Ku Muhammad Naim Ku Khalif and Alexander Gegov(&)

School of Computing, University of Portsmouth,
Buckingham Building, Lion Terrace, Portsmouth PO1 3HE, UK
{muhammad.khalif,alexander.gegov}@port.ac.uk

Abstract. A prior distributions in standard Bayesian knowledge are assumed to
be classical probability distribution. It is required to representable those prob-
abilities of fuzzy events based on Bayesian knowledge. Propelled by such real
applications, in this research study, the theoretical foundations of Vectorial
Centroid of interval type-2 fuzzy set with Bayesian logistic regression is
introduced. As opposed of utilising type-1 fuzzy set, type-2 fuzzy set is rec-
ommended based on the involvement of uncertainty quantity. It additionally
highlights the association of fuzzy sets with Bayesian logistic regression permits
the use of fuzzy attributes by considering the need of human intuition in data
analysis. It may be worth including here that this proposed methodology then
applied for BUPA liver-disorder dataset and validated theoretically and
empirically.
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1 Introduction

Through the most recent decade, uncertainty problems are common issue in complex
systems. In describing uncertainty, a lot of techniques have drawn the attentions of
researchers and applied scientist over last decade. Decisions are made based on
information given which known as data. However, information about decision is
always uncertain. In real-world phenomena, the uncertain information may consist of
randomness, vagueness and fuzziness. Machine learning has always been considered as
an integral part of the field of artificial intelligence. In artificial intelligence research
area, the main problems that always arise are: how to reason uncertain information
precisely and: how to reason using uncertain information [1]. Machine learning is
certainly one of the most significant subfields of modern artificial intelligence. In recent
years, machine learning systems have been adopted standard framework to deal with
imprecision in data analysis.

In dealing with imprecise data, type-1 fuzzy set is used as a unique tool to erase
these imprecision appropriately. Uncertainty is closely connected with probability,
which establishes the formal framework in machine learning systems. Uncertainty and
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fuzziness are very prominent phenomena in science and engineering applications,
where most of researchers nowadays are often used type-1 fuzzy for their case studies.
Some of the input data sets, we can’t describe straight away or objectively because they
have different interpretations and very subjective. Even, type-1 fuzzy set can’t tackle
the uncertainty component completely because the degree of membership grade of
type-1 fuzzy set is focusing on imprecision only. Type-2 fuzzy set is capable to deal
with uncertainty or approximate reasoning, especially for the machine learning systems
with a mathematical model that is difficult to derive. [2] claim that type-1 fuzzy set only
describe imprecise not uncertainty. On particular motivation for the further interest in
type-1 fuzzy set that its’ provide a better scope for modelling uncertainty than type-1
fuzzy set [3].

Zadeh [4] introduced fuzzy set theory in representing vagueness or imprecision in a
mathematical approach. In order to do so, the foremost motivation of using fuzzy set
shows its ability in appropriately dealing with imprecise numerical quantities and
subjective preferences of decision makers [5]. Fuzzy numbers are represented as
possibility distribution where most of the real-world phenomena exist in nature are
fuzzy rather than probabilistic or deterministic [6]. It was specifically designed to
mathematically represent to randomness and also provide formalised tools for dealing
with imprecision essential to many real problems nowadays. Technologies nowadays
have been developed in fuzzy set that have potential to support all of the steps that
encompass a process of model orientation and knowledge discovery. In particular,
fuzzy set theory can be used in data analysis to model vague data in terms of fuzzy set.
These are some contributions that fuzzy set can assist machine learning which are:
(1) graduality; (2) granulity; (3) interpretability; (4) robustness; (5) representation of
uncertainty; (6) incorporation of background knowledge and; (7) aggregation, com-
bination and information fusion [7]. In particular, fuzzy set theory can already be used
in the data selection or data processing. For analysing the fuzzy data, there are two
different ways: (1) fuzzifying the mapping from data to model and: (2) embed the data
into more complex mathematical spaces, like fuzzy metric spaces.

Type-2 fuzzy set notion was introduced by Zadeh [8] as an extension of the type-1
fuzzy set. In accordance to [9], type-2 fuzzy set can be considered as fuzzy membership
function where the membership value for each element in type-2 is a fuzzy set in [0, 1],
different with type-1 fuzzy set where the membership value is in crisp condition
between [0, 1]. The interval type-2 fuzzy set is extensively used in type-2 fuzzy set
family in many practical science and engineering areas [10]. The participation of higher
level uncertainty of type-2 fuzzy set compared to type-1, provide additional degrees of
freedom to represent the uncertainty and the fuzziness of real-world problems.
Uncertainty can be divided into two types which are inter and intra personal uncer-
tainties, in improvising the representation of type-1 fuzzy set in the literature of fuzzy
sets. This is also supported by [11] where there are supposedly two kinds of uncer-
tainties that are related to linguistic characteristics namely intra-personal uncertainty
and inter-personal uncertainty, In fact, a lot of experts have applied interval type-2
fuzzy set in machine learning systems analysis. Due to implementing interval type-2
fuzzy set in real-world problems, the way to handle is different and much more
complex compared to type-1 fuzzy set. The contribution of centroid of type-2 fuzzy set
still now commonly used uncertainty measure for modelling problems. Interval type-2
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fuzzy set offer an approach to handle knowledge uncertainty in machine learning
systems.

Defuzzification plays an important role in the performance of fuzzy system’s
modelling techniques [12]. Generally, defuzzification process is guided by the output
fuzzy subset that one value would be the selected as a single crisp value as the system
output. There are variation defuzzification methods have largely developed. Never-
theless, they have difference performances in difference applications and there is a
general method can satisfactory performance in all conditions [13]. The centroid
defuzzification methods of fuzzy numbers have been explored for the last few decades
that commonly used and have been applied in various discipline areas. The compu-
tation complexity of type-2 fuzzy set is very problematic to handle into practical
applications because of characterised by their footprint of uncertainty (FOU) [14]. Two
typical directions in computing type-2 fuzzy set intensively: (1) type-reduction [9, 14,
15] and; (2) direct defuzzification [16]. Most experts applied type-reduction methods in
handling the complexity of type-2 fuzzy set by finding the equivalent type-1 fuzzy set.
Though, direct defuzzification computational for type-2 fuzzy set is still under study.

The possibility mean value for interval sets was introduced by [17] where the
notations of lower possibilistic and upper possibilistic mean values are defined the
interval-valued possibilistic mean. From probabilistic viewpoint, the possibility mean
value of fuzzy sets can be represented as expected values which is same function as
direct defuzzification method where it does not need type-reduction or conversion stage
into type-1 fuzzy to get the outputs. [16] extend the concept of [17] about possibility
mean value of type-1 fuzzy set which introduce the lower and upper possibility mean
value for interval type-2 fuzzy set. In this paper, the comparative simulation results
between the proposed of the extension of Vectorial Centroid [18] and possibility mean
value proposed by [16] method for interval type-2 fuzzy set, where in some cases it will
give illogical and irrational results that inconsistent with human intuition. This method
can’t cater all possible cases of interval type-2 fuzzy set properly since some of the
results are dispersed far away from the closed interval bounded by the expectations
calculated from its upper and lower distribution functions.

Due to growths in computational capability and technology development, data are
being generated for understanding details real-world problems in health nowadays that
associated with clinic test, diseases, disorder, genetic cases and so forth [19]. Yet, with
the availability of large datasets become the essential challenges of a new methods of
statistical analysis and modelling. Logistic regression model is one of machine learning
systems that used in handling these problems with high-dimensional data. The dataset
that represents binary dependent attribute where it uses logit transform to predict
probabilities directly. Logistic regression is a model-based approach to mapping
observers’ distribution. When applied within Bayesian setting, logistic regression
provides a useful platform for integrating expert knowledge, in the form of a prior, with
empirical data [20]. Probability is a complete with parametric models that let us
characterised random uncertainty [10]. Prior knowledge can be amalgamated into
Bayesian logistic regression and the method is computationally efficient.

Issues with respects to representation capability of fuzzy sets in machine learning
systems on uncertainty become one of the significant problems in decision making
environments. The aim of the present paper is to illustrate the extension of Vectorial
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Centroid [18] method for interval type-2 fuzzy set that consider the illustration of
Bayesian algorithm about the parameters of a logistic regression model. Aiming at the
problems pointed out above, new centroid defuzzification for interval type-2 fuzzy set
is proposed that easy to understand, more flexible and more intelligent compared to
existing methods. The proposed method also considers the need of human intuition and
gives logical results while dealing with machine learning systems. In this research
study, classification dataset with binary dependent attribute is used. The observations in
this dataset, we worked on “BUPA liver-disorder” that were sampled by BUPA
Medical Research Ltd. There are 7 attributes that consist of six independent attributes
and one binary dependent attribute. The BUPA liver-disorder dataset represents blood
tests indicating a property of liver disorders that may increase from excessive alcohol
consumption.

The remainder of this paper is organised as follows: Sect. 2 introduces the concepts
of type-2 fuzzy set, interval type-2 fuzzy set, centroid method that proposed by [16]
and Bayesian logistic regression. Section 3 views the proposed new centroid method
for interval type-2 fuzzy sets using Vectorial Centroid method. Section 4 illustrates the
implementation of proposed method with Bayesian logistic regression in BUPA
liver-disorder and compares the results with [16] method. Section 5 summarises the
main results and draws conclusion.

2 Preliminaries

2.1 Interval Type-2 Fuzzy Set

Definition 1: A type-2 fuzzy set A
�
in the universe of discourse X represented by the

type-2 membership function l. If all l
A
�ðx; uÞ ¼ 1, then A

�
is called an interval type-2

fuzzy set. An interval type-2 fuzzy set can be considered as a special case type-2 fuzzy
set, denoted as follows [5]:

A
� ¼

Z

x2X

Z

u2Jx

1=ðx; uÞ;where Jx � 0; 1½ � ð1Þ

Definition 2: The upper and lower membership function of an interval type-2 fuzzy set
are type-1 fuzzy set membership functions, respectively. A trapezoidal interval type-2

fuzzy set can be represented by Ai

�
¼ ð~AU

i ;
~AL
i Þ ¼ ððaUi1; aUi2; aUi3; aUi4;H1ð~AU

i Þ; ~H2ð~AL
i ÞÞ;

ðaLi1; aLi2; aLi3; aLi4;H1ð~AL
i Þ;H2ð~AL

i ÞÞÞ where can be shown in Fig. 1 [16]. The ~AU
i and ~AL

i

are type-1 fuzzy sets, aUi1; a
U
i2; a

U
i3; a

U
i4; a

L
i1; a

L
i2; a

L
i3 and aLi4 are the reference points of the

interval type-2 fuzzy set A
�
, Hjð~AU

i Þ denote the membership value of the element aUiðjþ 1Þ
in the upper trapezoidal membership function ~AU

i ; 1� j� 2; Hjð~AL
i Þ denotes the

membership value of the element aLiðjþ 1Þ in the lower trapezoidal membership function
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~AL
i ; 1� j� 2, and for H1ð~AU

i Þ 2 ½0; 1�;H2ð~AU
i Þ 2 ½0; 1�;H1ð~AL

i Þ 2 ½0; 1� and 1� i� n;
H2ð~AU

i Þ 2 ½0; 1� [5].

2.2 Bayesian Logistic Regression

The principal of Bayesian inference for logistic regression analyses follows the typical
pattern for Bayesian analysis [21]:

1. Write down the likelihood function of the data
2. Form a prior distribution over all unidentified parameters
3. Find posterior distribution using Bayes theorem over all parameters

Likelihood Function: The likelihood contribution from the ith subject is binomial

likelihoodi ¼ pðxiÞyið1� pðxiÞÞð1�yiÞ ð2Þ

where pðxiÞ represents the probability of the event for subject i, which has covariate
vector xi and yi specifies the liver-disorder yi ¼ 1, or liver-normal yi ¼ 2 of the event
for the subject. Logistic regression is denoted as

pðxÞ ¼ eb0 þb1Xi þ ...þbpXp

1þ eb0 þb1Xi þ ...þbpXp
ð3Þ

So the likelihood from the ith subject is

likelihoodi ¼ eb0 þ b1Xi1 þ ...þ bpXip

1þ eb0 þ b1Xi1 þ ...þbpXip

� �yi

1� eb0 þ b1Xi1 þ ...þ bpXip

1þ eb0 þ b1Xi1 þ ...þ bpXip

� �ð1�yiÞ

Fig. 1. The upper trapezoidal membership function ~AU
i and lower trapezoidal membership

function ~AL
i of interval type-2 fuzzy set.
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likelihoodi ¼
Yn

i¼1

eb0 þb1Xi1 þ ...þbpXip

1þ eb0 þb1Xi1 þ ...þbpXip

� �yi

1� eb0 þb1Xi1 þ ...þbpXip

1þ eb0 þb1Xi1 þ ...þbpXip

� �ð1�yiÞ" #

ð4Þ

Prior Distribution: In general, any prior distribution can be used, depending on the
available prior information.

bj �Normalðcj; r2j Þ ð5Þ

The most common choice for c is zero, and r is usually chosen to be large enough to
be considered as non-informative in the range from r ¼ 10 to r ¼ 100.

Posterior Distribution via Bayes Theorem: The posterior distribution is divided by
multiplying the prior distribution over all parameter by the full likelihood function, so
that

Posterior ¼ Qn

i¼1

eb0 þ b1Xi1 þ ...þ bpXip

1þ eb0 þ b1Xi1 þ ...þ bpXip

� �yi
1� eb0 þb1Xi1 þ ...þbpXip

1þ eb0 þ b1Xi1 þ ...þ bpXip

� �ð1�yiÞ
� �

	‘p

j¼0

1ffiffiffiffiffiffiffi
2prj

p exp � 1
2

bj�cj
rj

� �2
	 
 ð6Þ

The latter part of the above expression being recognised as normal distribution for
the b parameters. For liver-disorder classification problem, pðy ¼ 1jbpxpÞ, will be an
estimate of the probability that the pth document belongs to the category. The decision
of whether to assign the category can be based on comparing the probability estimate
with a threshold or by computing which decision gives optimal expected utility.

2.3 Interval-Valued Possibility Mean Value

The concept of interval-valued possibility mean value are divided into two parts which

are lower and upper possibility mean value. The lower MðA
�Þ and upper MðA

�Þ possi-
bility mean value for interval type-2 fuzzy set are denoted as follow [16]:

MðA
�Þ ¼

Z hU

0
a aU1 þ aU2 � aU1

hu
a

� �
daþ

Z hL

0
b aL1 þ

aL2 � aL1
hL

b

� �
db ð7Þ

MðA
�Þ ¼

Z hU

0
a aU4 þ aU3 � aU4

hu
a

� �
daþ

Z hL

0
b aL4 þ

aL3 � aL4
hL

b

� �
db ð8Þ

For crisp value, we can compute by using the average of lower and upper possi-
bility mean value above that denoted as follows
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MðA
�Þ ¼ MþM

2
ð9Þ

In this paper, the numerical analysis for proposed methodology is compared with
interval-valued possibility mean value that proposed by [16].

3 Proposed Method

As noted in the introduction, the useful of interval type-2 fuzzy sets nowadays are
widely applied in many research areas in dealing with uncertainty in data analysis
which consistent with human intuition at the same time. A lot of researchers attempt to
eliminate the need of human intuition in data analysis processes. Human intuition is
strictly can’t be eliminated because it can drive us towards uncertainty problems. This
study simplify the concept of attributes to l

A
� 2 ½0; 1� for fuzzy events. The values of

attributes correspond to interval type-2 fuzzy sets. This study proposed a new centroid
defuzzification method for Bayesian logistic regression algorithm. The methodology
consist of two stages here namely:

A. Stage one
The development of an extension of the Vectorial Centroid defuzzification for
interval type-2 fuzzy set.

Let consider by Ai

�
¼ ð~AU

i ;
~AL
i Þ ¼ ððaUi1; aUi2; aUi3; aUi4;H1ð~AU

i Þ; ~H2ð~AL
i ÞÞ; ðaLi1; aLi2; aLi3;

aLi4;H1ð~AL
i Þ;H2ð~AL

i ÞÞÞ as the interval type-2 fuzzy set. The complete method process of
Vectorial Centroid is signified as follows:

Step 1: Compute the centroid points of the three parts of a; b and c in interval type-2
fuzzy set representation as shown in Fig. 2.

Fig. 2. Vectorial Centroid plane representation.

Implementing Adaptive Vectorial Centroid 321



aa;aðx; yÞ ¼ 1
3
ðaU1 þ 1

2
aU2 Þþ

1
3
ðaL1 þ

1
2
aL2Þ;

1
6
ðhU þ hLÞ

� �
ð10Þ

bb;bðx; yÞ ¼
1
4
ðaU2 þ aU3 þ aL2 þ aL3Þ;

1
4
ðhU þ hLÞ

� �
ð11Þ

cc;cðx; yÞ ¼
1
3
ðaU3 þ 1

2
aU4 Þþ

1
3
ðaL3 þ

1
2
aL4Þ;

1
6
ðhU þ hLÞ

� �
ð12Þ

Step 2: Connect all vertices centroids points of a; b and c each other, where it will
generate another triangular plane inside of trapezoid plane.
Step 3: The centroid index of Vectorial Centroid of ð~x;~yÞ with vertices a; b and c
can be calculated as:

VC
A
�ð~x;~yÞ ¼

aa;aðx;yÞþ b
b;b

ðx;yÞþ cc;cðx;yÞ
3 ;

�
bb;bðx; yÞ

þ 2
3

aa;aðx;yÞþ cc;cðx;yÞ
2 � bb;bðx; yÞ

� �� �� ð13Þ

Vectorial Centroid can be summarised as

VC
A
�ð~x;~yÞ ¼ 1

9 aU1 þ aL1 þ 5
4 ðaU2 þ aL2Þþ 7

4 ðaU3 þ aL3Þ
��

þ 1
2 ðaU4 þ aL4Þ


; 1136 ðhU þ hLÞ� ð14Þ

where

a: the centroid coordinate of first triangle plane
b: the centroid coordinate of rectangle plane
c: the centroid coordinate of second triangle plane

ð~x;~yÞ: the centroid coordinate of fuzzy number A
�

Centroid index of Vectorial Centroid can be generated using Euclidean distance
by [23]:

RðA
�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2 þ~y2

p
ð15Þ

B. Stage two
The implementation of Vectorial Centroid in Bayesian logistic regression.
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Integrating fuzzy sets with Bayesian logistic regression in fuzzy states of nature, where
if there is fuzzy dataset, defuzzification process is needed in converting into crisp
values where at the same time the fuzzy nature is not lost. Reinterpretation of degree
l
A
� 2 ½0; 1� using Vectorial Centroid to the Pðy ¼ 1jbpXpÞ is developed as follows:

Step 1: Lift the reintergration of the fuzzy values membership function using
trapezoidal interval type-2 fuzzy sets. Vectorial Centroid formulation are applied for

trapezoidal interval type-2 fuzzy set rule formula. The l
A
� represents as A1

�
¼

ð~AU
1 ;

~AL
1Þ ¼ ððaU11; aU12; aU13; aU14;H1ð~AU

1 Þ;H2ð~AU
1 ÞÞ; ðaL11; aL12; aL14;H1ð~AL

1Þ;H2ð~AL
1ÞÞÞ in

calculation to avoid cluttering.

Step 2: The centroid index of Vectorial Centroid, RðA
�Þ is inserted into Bayesian

logistic regression rule as

RðA
�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2 þ~y2

p
¼ lðA

�Þ

The computational process of likelihood and posterior distribution of fuzzy Bayesian
logistic regression using Vectorial Centroid are denoted as

likelihoodi ¼
Yn

i¼1

eb0 þ b1lðA
�Þi1 þ ...þ bplðA

�Þip

1þ eb0 þ b1lðA
�Þi1 þ ...þ bplðA

�Þip

0
@

1
A

yi

1� eb0 þ b1lðA
�Þi1 þ ...þ bplðA

�Þip

1þ eb0 þ b1lðA
�Þi1 þ ...þbplðA

�Þip

0
@

1
A

ð1�yiÞ
2
64

3
75

ð16Þ

Posterior ¼ Qn

i¼1

eb0 þ b1lðA
�Þi1 þ ...þ bplðA

�Þip

1þ eb0 þ b1lðA
�Þi1 þ ...þ bplðA

�Þip

� �yi

1� eb0 þb1lðA
�Þi1 þ ...þbplðA

�Þip

1þ eb0 þ b1lðA
�Þi1 þ ...þbplðA

�Þip

� �ð1�yiÞ
" #

	‘p

j¼0

1ffiffiffiffiffiffiffi
2prj

p exp � 1
2

bj�cj
rj

� �2
	 
 ð17Þ

4 Experimental Settings

The experiment is conducted using 10-fold cross validation on BUPA liver-disorder
dataset from UCI machine learning repository [22] is used where donated by BUPA
Medical Research Ltd. This liver-disorder classification dataset has 345 examples, 7
attributes and binary classes for dependent attribute. The first 5 attributes are mea-
surements taken by blood tests that are thought to be sensitive to liver-disorders and
might arise from excessive alcohol consumption. The sixth attribute is a sort of selector
attribute where the subjects are single male individuals. The seventh attribute shows a
selector on the dataset which being used to split into two categories that indicating the
class identity. The attributes include:
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a. Mean corpuscular volume,
b. Alkaline phosphatase,
c. Aspartate aminotransferase,
d. Gamma-glutamyl transpeptidase,
e. Alamine aminotransferase,
f. Number if half-pint equivalents of alcoholic beverage drunk per day, and
g. Output attributes either liver disorder or liver normal

Among all the people, there are 145 belonging to the liver-disorder group and 200
belonging to the liver-normal group. These attributes are selected with the aid of
experts. The original dataset are fuzzified randomly in interval type-2 fuzzy sets form in
operating centroid methods. Suppose that attribute alkaline phosphatase, aspartate
aminotransferase, gamma-glutamyl transpeptidase and alamine aminotransferase are
fuzzy events, lbixi . Below describes the example of interval type-2 fuzzy sets are used
in this research study:

Example: If the trapezoidal interval type-2 fuzzy set Ai

�
¼ ð~AU

i ;
~AL
i Þ ¼ ðð15:35;

16:68; 18:06; 20:51; 1Þ; ð16; 17; 18; 19; 0:9ÞÞ, then the centre points are computed using
proposed of extension Vectorial Centroid and interval-valued possibility mean value
[16] formulation respectively as follows:

Vectorial Centroid:
VCðxÞ ¼ 17:3678 and VCðyÞ ¼ 0:58056

Centroid index Vectorial Centroid, VCðR�Þ ¼ 17:3775
Interval-Valued Possibility Mean Value:

MðAÞ
�

¼ M
ðA
�Þ;M
ðA

�Þ
h i

¼ 14:8683; 16:8633½ �
Crisp possibility mean value, MðA

�Þ ¼ 15:8658

5 Simulation Results

This section illustrates the validation process of the methodology in theoretically and
empirically. Therefore, the theoretical of Vectorial Centroid validation process are as
follow:

A. Stage one
The relevant properties considered for qualifying the applicability of centroid for
interval type-2 fuzzy set, where they depend on the practicality within the area of
research however, they are not considered as complete. Therefore, without loss of
generality, the relevant properties of the centroid are as follow:

Let A
�
and B

�
are be trapezoidal and triangular interval type-2 fuzzy set respectively,

while VC
A
�ð~x;~yÞ and VC

B
�ð~x;~yÞ be centroid points for A

�
and B

�
respectively. Centroid

index of Vectorial Centroid, (R) shows the crisp value of centroid point that is denoted

as RðA
�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2 þ~y2

p
.
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Property 1: If A
�
and B

�
are embedded and symmetry, then RðA

�Þ[RðB�Þ.

Proof: Since A
�

and B
�

are embedded and symmetry, hence from Eq. (15) we have
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2

A
� þ~y2

A
�

q
[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2

B
� þ~y2

B
�

q
. Therefore, RðA

�Þ[RðB�Þ.

Property 2: If A
�
and B

�
are embedded with ðhU ; hLÞ

A
� [ ðhU ; hLÞ

B
�, then Rð~AÞ[Rð~BÞ.

Proof: Since A
�
and B

�
are embedded and with ðhU ; hLÞ

A
�ðhU ; hLÞ

B
�, hence we know that

~y~A [~y~B.

Then, from Eq. (15) we have
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2

A
� þ~y2

A
�

q
[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2

B
� þ~y2

B
�

q
. Therefore, RðA

�Þ[RðB�Þ.

Property 3: If A
�
is singleton fuzzy number, then RðA

�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2

A
� þ~y2

A
�

q
.

Proof: For any crisp (real) interval type-2 fuzzy set, we know that aU1 ¼ aU2 ¼ aU3 ¼
aU4 ¼ aL1 ¼ aL2 ¼ aL3 ¼ aL4 ¼ ~x

A
� which are equivalent to Eq. (14). Therefore,

RðA
�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2

A
� þ~y2

A
�

q
.

Property 4: If A
�
is any symmetrical or asymmetrical interval type-2 fuzzy number, then

aU1 \RðA
�Þ\aU4 .

Proof: Since any symmetrical or asymmetrical interval type-2 fuzzy set has

aU1 � aU2 � aU3 � aU4 , hence aU1 \VC
A
�ð~x;~yÞ\aU4 . Therefore, a

U
1 \RðA

�Þ\aU4 .

B. Stage two
Aforementioned, the empirical validation is implemented where the BUPA
liver-disorder data set is used in conducting Bayesian Logistic Regression data
analysis.
Note that this study is considered all type of possible interval type-2 fuzzy set for

attributes randomly as Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12.
In simulation analysis, the data set is randomly partitioned into 10 equal sized

partitions. Then, one of the partitions is used to test, while the rest of the partitions is
dedicated to train the base learner. This procedure is repeated ten times so that each
partition is used for the test exactly one time. Here, a mean accuracy of the individual
results is combined. Table 1 presents a comparative results between classical Bayesian
logistic regression (BLR-Classic), Bayesian logistic regression using possibility mean
value [16] method (BLR-PMV), and Bayesian logistic regression using the extension
of Vectorial Centroid (BLR-VC). The comparison results are based on accuracy,
precision, sensitivity, specificity, Kappa statistic, and some error terms: Mean Absolute
Error (MAE), Root Mean Square Error (RMSE), Relative Absolute Error (RAE) and
Root Relative Square Error (RRSE).
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Fig. 3. Trapezoidal non-normal symmetry.

Fig. 4. Trapezoidal normal symmetry.

Fig. 5. Trapezoidal non-normal asymmetry.
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Fig. 6. Trapezoidal normal asymmetry.

Fig. 7. Triangular non-normal symmetry.

Fig. 8. Triangular normal symmetry.
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Fig. 9. Triangular non-normal asymmetry.

Fig. 10. Triangular normal asymmetry.

Fig. 11. Singleton non-normal.
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The accuracy and precision of a measurement system plays important role in
quantifying the actual measure value. It is commonly used as metric for evaluation of
machine learning systems. In addition to classification, accuracy results obtained by the
algorithm. The precision is dependent of accuracy where the model can be very precise
but inaccurate. The higher the value of accuracy and precision, the better classification
prediction is made. In this research study, Table 1 shows the classification accuracy
results that show the correctness of a model classifies the dataset in each class. Below
shows the formulation of accuracy and precision:

Accuracy :
TotalPositiveþ TotalNegative

PositiveþNegative
ð17Þ

Precision :
TotalPositive

TotalPositiveþFalsePositive
ð18Þ

The classification accuracy results of BLR-Classic, BLR-PMV and BLR-VC are
67.2464 %, 58.5507 % and 68.1159 % respectively. It shows that the proposed
methodology is significantly more accurate and very promising compared to others.

Fig. 12. Singleton Normal.

Table 1. Accuracy, precision, sensitivity, specificity Kappa statistic and error terms.

Method BLR-Classic BLR-PMV BLR-VC

Accuracy 67.2464 % 58.5507 % 68.1159 %
Precision 17.67 % 1.4 % 30.34 %
Sensitivity 82 % 66.67 % 83.02 %
Specificity 64.75 % 58.41 % 65.41 %
Kappa Statistic 0.2613 0.0203 0.2832
Error:
MAE 0.3275 0.4145 0.3188
RMSE 0.5723 0.6438 % 0.5647
RAE 67.2025 % 85.0438 % 65.4183 %
RRSE 115.9404 % 130.4259 % 114.391 %

Implementing Adaptive Vectorial Centroid 329



The highest precision in this case study is BLR-VC with 30.34 %, followed by
BLR-Classic with 17.67 % and BLR-PMV with 1.4 %. Precision discusses the
closeness of two or more measurements to each other.

The sensitivity test mentions to the ability of the test to correctly identify those
observers with positive predictive value. A high sensitivity is clearly imperative where
the test is used to identify the correct class. But, specificity test is inversely proportional
to sensitivity where it has the ability of the test to correctly identify those observers
with negative predictive value [24]. Below are formulation to calculate sensitivity and
specificity:

Sensitivity :
TotalPositive

TotalPositiveþFalseNegative
ð19Þ

Specificity :
TotalNegative

FalsePositiveþ TotalNegative
ð20Þ

It is interesting to observe that the proposed method, BLR-VC produces the highest
sensitivity and specificity value with 83.02 % and 65.41 % respectively. The results for
BLR-PMV shows the lowest results for sensitivity and specificity with 66.67 % and
58.41 % respectively. It depicts that the goodness of prediction of both tests for
BLR-PMV is lesser than BLR-Classic and BLR-VC.

Kappa statistic technique is used to measure the agreement of two classifiers and
estimate the probability of two classifiers agree simply by chance [25]. Known as
chance-corrected measure of agreement between classification and the true classes, it is
an evaluation metric which is based on the difference between the actual agreement in
the error matrix and the chance agreement. The values for Kappa range from 0 to 1 and
the higher the value of Kappa statistic, the stronger the strength of agreement between
two classifiers by chance.

KappaStat; k ¼ po � pe
1� pe

ð21Þ

where

po is relative observed agreement among raters,
pe is the hypothetical probability of chance agreement.

BLR-VC shows the highest value of Kappa statistic with 0.2832 followed by
BLR-Classic and BLR-PMV with 0.2613 and 0.0203 respectively. It seems that, the
proposed methodology produced strong agreement between two classifiers by chance.

The final part in Table 1 depicts the errors for the experiment carried out. The errors
are computed using Mean Absolute Error (MAE), Root Mean Square Error (RMSE),
Relative Absolute Error (RAE) and Root Relative Square Error (RRSE). All the
statistic error terms compare true values to theirs estimates, but do it in a slightly
different way. Below depict the formulation in calculating MAE, RMSE, RAE and
RRSE:
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MAE ¼ 1
N

XN

i¼1

ĥi � hi
���

��� ð22Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1

ðĥi � hiÞ2
vuut ð23Þ

RAE ¼
PN

i¼1
ĥi � hi
���

���

PN

i¼1

�hi � hi
�� ��

ð24Þ

RRSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
ðĥi � hiÞ2

PN

i¼1
ð�hi � hiÞ2

vuuuuuut
ð25Þ

These error terms demonstrates how disperse away the estimated values from the
true value of h. MAE and RMSE calculate the average difference between those two
values. For every data point, the distance is take vertically from the point of the
corresponding estimated value on the curve fit and square the value. RMSE is directly
interpretable in terms of measurement units that measure of goodness of fit. In RAE and
RRSE, we divide those differences by the variation of h where they have a scale from 0
to 1, then we would multiply those value by 100 to get the similarity in 0–100 scale. In
this simulation results, the proposed methodology, BLR-MC performs better in error
terms where all of these errors are less than BLR-Classic and BLR-PMV.

6 Conclusion

The usefulness of fuzzy Bayesian knowledge in understanding and modelling complex
uncertainty associated with real-world problems is presented in this paper. This research
study has carried out an extension based Vectorial Centroid for interval type-2 fuzzy set
with Bayesian logistic regression. Bayesian logistic regression algorithm that takes into
account the need of fuzzy events in attributes. This work consist of two stages which are:
(1) The development of Vectorial Centroid defuzzification method for interval type-2
fuzzy set and: (2) The implementation of Vectorial Centroid in Bayesian logistic
regression. For the primary stage, the development of new centroid method can cater all
the possible cases of interval type-2 fuzzy set precisely that matching for human intu-
ition. The implementation in Bayesian logistic regression using proposed method on
stage two is easily capable constructed and handled in data analysis when dealing with
fuzzy data sets. The contribution of the paper can be summarised as follows. First, the
development of new defuzzification method which can cater all possible cases in
interval type-2 fuzzy sets and considering human judgment or intuition. Second, the
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presented hybrid intelligent classification model utilised the consistency-based feature
selection between new Vectorial Centroid defuzzification method and Bayesian logistic
regression model. The experimental results on Table 1 indicates that the proposed
hybrid classification model can obtain very promising results in terms of accuracy,
precision, sensitivity, specificity, Kappa statistics and error terms.

Although the model proposed in this paper is relatively simple conceptually, some
drawbacks may exist in this research study. First, the proposed hybrid classification
model for interval type-2 fuzzy numbers was developed and tested on BUPA
liver-disorder dataset from WEKA (Waikato Environment for Knowledge Analysis)
software. The useful of interval type-2 fuzzy set for attributes are randomly computed.
Hence, the implementation or development of special linguistic terms for attributes are
needed for remarkable outputs. Second, the scope of this research study is focused to be
automated diagnosis liver-disorder. Still, more experimental work should be enthusi-
astic to obtain a medical classification model with a better ability of generalization
under fuzzy environment. Finally, the proposed Vectorial Centroid only applied for
Bayesian logistic regression. It should be applied and compared with other machine
learning systems in the future work that would make research much more convincing.

Despite the above drawbacks, this study can be profitable alternatively in the set of
existing Bayesian logistic regression algorithms for various problems in machine
learning such as inference, classification, clustering, regression and so forth. There are
four relevant properties for centroid development are constructed and well proved in
theoretical validation, where corresponding with all possible interval type-2 fuzzy set
representation. Several tests for validation have been done and the results have been
studied in-depth using BUPA liver-disorder classification dataset from UCI machine
learning repository. With this promising preliminary simulation results, the proposed
research study presents more effective in dealing with fuzzy events empirically. To
conclude, the main focus of this research study can be continued in order to make some
contributions by considering real case study drawn for diverse fields crossing ecology,
health, genetics, finance and so forth. To take care of the hybrid of fuzzy machine
learning systems, a more general concepts of general fuzzy numbers and fuzzy vectors
along the characterising function must be applied in capturing the imprecision and
uncertainty in data analysis.
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Abstract. A mixed order hyper network (MOHN) is a neural network
in which weights can connect any number of neurons, rather than the
usual two. MOHNs can be used as content addressable memories (CAMs)
with higher capacity than standard Hopfield networks. They can also be
used for regression learning of functions in f : {−1, 1}n → R in which
the turning points are equivalent to memories in a CAM. This paper
presents a number of methods for learning an energy function from data
that can act as either a CAM or a regression model and presents the
advantages of using such an approach.

1 Introduction

For a long time, the multi layer perceptron (MLP) [10] has been a very popular
choice for performing non-linear regression on functions of multiple inputs. It
has the advantage of being easy to apply to problems where there is little or no
knowledge of the structure of the function to be learned, particularly concerning
the interactions between input variables. The weight learning algorithm (back
propagation of error, for example) simultaneously discovers features (interactions
between inputs) in the function that underlies the training data and the correct
values for the regression coefficients, given those features. This leads to two
significant and well known disadvantages of the MLP, namely the so called ‘black
box problem’ that means it is very difficult for a human analyst to learn much
about the structure of the underlying function from the structure of the network
and the problem of local minima in the error function that are a result of the
hidden units failing to encode the correct interactions between input variables.

Another type of neural network, the Hopfield network (HN) [6], is used as a
content addressable memory. Unlike MLPs, HNs do not have neurons that are
distinguished as either inputs or outputs. All neurons can take external input and
all can be updated via weights from other neurons. Their new outputs can be read
as if they were output neurons. HNs can be trained to store a set of patterns in
{−1, 1}n and their dynamics are such that when their neurons are set to a pattern
that has not been stored, updating the neuron values causes the network to move
to represent a pattern that is in its memory. Such networks suffer from two main
short comings. They have a low capacity for storing memories compared to the
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number of neurons they contain and they often contain many spurious attractors
- memories that were not loaded but are recalled if the starting pattern is closer
to them than to a stored memory.

The problems of both MLPs and HNs described above are addressed by
Mixed Order Hyper Networks (MOHNs) [16], which make the structure of the
function explicit, meaning that human readability is greatly improved. There
are no local minima in the error function and they have a far higher memory
capacity than HNs. This paper presents and compares a number of methods for
calculating the correct weight values for a MOHN of fixed structure. Different
learning rules have different strengths and weaknesses. Some, for example may
be carried out in an on line mode, meaning that the data need not be all stored
in memory at one time. On line learning also allows partially learned networks
to be updated in light of new data or as part of an algorithm to discover the cor-
rect connection structure. Standard regression techniques such as ordinary least
squares (OLS) and Least Absolute Shrinkage and Selection Operator (LASSO)
may be applied when on line learning is not required. LASSO also has the advan-
tage that weights that do not contribute to the function end up with values equal
to zero.

MOHNs have been shown to be useful as fitness function models if used as
part of a metaheuristic constraint satisfaction (or combinatorial optimisation)
algorithm [13,17]. In such cases, it is not always necessary to learn the whole
function space correctly, but sufficient to build a model where the attractors
in the energy function correspond to turning points (local optima) in the fit-
ness function. A simpler learning rule is sufficient to build such models, and is
presented here.

2 Mixed Order Hyper Networks

A Mixed Order Hyper Network is a neural network in which weights can connect
any number of neurons. A MOHN has a fixed number of n neurons and ≤2n

weights, which may be added or removed dynamically during learning. Each
neuron can be in one of two states: ui ∈ {−1, 1}. The state of the MOHN is
determined by the values of the vector, u = u0 . . . un−1. The structure of a
MOHN is defined by a set, W of real valued weights, each connecting 0 ≤ k ≤ n
neurons. The weights define a hyper graph connecting the elements of u. Each
weight, wj has an integer index that is determined by the indices of the neurons
it connects:

W ⊆ {wj : j = 0 . . . 2n−1} wj ∈ R (1)

The weights each have an associated order, defined by the number of neurons
they connect. There is a single zero-order weight, which connects no neurons,
but has a weight all the same. There are n first order weights, which are the
equivalent of bias inputs in a standard neural network. In general, there are

(
n
k

)
possible weights of order k in a network of size n. For convenience of notation,
the set of k neurons connected to weight wj is denoted Qj , meaning that the
index j defines a neuron subset. This is done by creating an n bit binary number,
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u0 u1

u3 u2

w9 w6

w1 w2

w8
w4

w0

w15

w7

Fig. 1. A four neuron MOHN with some of the weights shown. w7 is the triangle and
w15 is the square.

where bit i is set to one to indicate that neuron i is part of the subset and zero
otherwise. The resulting binary number, stated in base 10 becomes the weight
index. For example, the weight connecting neurons {0, 1, 2} is w7 as setting the
bits 0,1,2 in a four bit number gives 0111, which is 7 in base 10. Consequently,
we can write Q7 = {u0, u1, u2}. Figure 1 shows an example MOHN where n = 4.

2.1 Using a MOHN

MOHNs can be applied to a number of different computational intelligence tasks
such as building a content addressable memory, performing regression, clustering,
classification, probability distribution estimation and as fitness function models
for use in heuristic optimisation. These different tasks involve different methods
of use and require different approaches to estimating the values on the weights.

3 The Weight Estimation Rules

This section presents the different methods for estimating the weights needed
to allow a MOHN to perform a particular task. Although, in theory the weights
can be designed by hand, all of the methods described here are based on learning
from data. In what follows, a single training example consists of a vector of input
variables and a real valued output denoted (x, y). The training data as a whole
is denoted D.

3.1 Hebbian Learning

The simplest of the MOHN learning rules is an extension to the Hebbian rule
employed by a Hopfield network to allow it to work with higher order weights.
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In this case, the training data consists only of input patterns, x and no function
output is specified. Learning involves setting ui = xi for each neuron and the
weight update is then:

wj = wj +
∏

u∈Qj

u (2)

The Hebbian learning rule allows the MOHN to be used as a content address-
able memory (CAM). The CAM learning algorithm is given in Algorithm 1.

Algorithm 1 . Loading Pattern x into a MOHN CAM.

ui = xi ∀i � Set the neuron outputs to equal the pattern to be learned
wj = wj +

∏
u∈Qj

u ∀wj ∈ W � Update the weights according to equation 2

For a network that is fully connected at order two, Algorithm 1 is the same
as loading patterns into a standard Hopfield network. When the MOHN con-
tains higher order weights, the capacity of the network is increased. Patterns
are recalled as they are in a Hopfield network, by setting the neuron values to
a noisy or degraded pattern and allowing the network to settle using a neuron
update rule that first calculates an activation value for each neuron, ai using
Eq. 3 and then applies a threshold using Eq. 4.

ai =
∑

j:ui∈Qj

(
wj

∏
k∈Qj\i

uk

)
(3)

where j : ui ∈ Qj makes j enumerate the index of each weight that connects to
ui and k ∈ Qj \ i indicates the index of every member of Qj , except neuron i
itself. A neuron’s output is then calculated using the threshold function in Eq. 4.

ui =
{

1, if ai > 0
−1, otherwise (4)

An attractor state is a pattern across u from which the application of Eqs. 3
and 4 results in no change to any of the neuron outputs. A trained MOHN
settles to an attractor point by repeated application of the activation rules 3
and 4, choosing neurons in random order. Algorithm 2 describes the algorithm
for settling from a pattern to an attractor.

The dynamics of Algorithm 2 have an underlying Lyapunov function, just
as they do in a standard HNN and will always settle to a local minimum of
the associated energy function. [19] report a capacity for binary valued order k
networks of the order of nk/ ln n, a figure that is also reported by [7]. In fact,
as described below, such networks are capable of representing any arbitrary
Lyapunov function and therefore a network with the right structure will be able
to represent any possible number of turning points.
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Algorithm 2 . Settling a trained MOHN to an attractor point.

repeat
ch ← FALSE � Keep track of whether or not a change has been made
visited ← {} � Keep track of which neurons have been visited
repeat

i ← rand(i : i /∈ visited) � Pick a random unset neuron
temp ← ui � Make a note of its value for later comparison
Update(ui) � Update the neuron’s output using equations 3 and 4
if ui �= temp then

ch ← TRUE
end if � If a change was made to the neuron’s output, note the fact
visited ← {visited ∪ i} � Add the neuron’s index to the visited set

until ‖visited‖ = n � Loop until all neurons have been updated
until !ch � Loop if any neuron value has changed

3.2 Weighted Hebbian Learning

Let f(x) be a multi-modal function where each local maximum represents a
pattern of interest. These patterns might be local optima in an optimisation
task, archetypes in a clustering task or examples of a satisfaction of multiple
constraints, for example. A MOHN can be trained as a CAM in which the
attractors are the local maxima of the function. The learning rule is a weighted
version of the Hebbian rule:

wj =
∑
x∈D

1
|D|f(x)

∏
u∈Qi

u (5)

Previous work [17] has shown that the weighted Hebbian rule is capable of
learning the local maxima of a function from samples of x, f(x) and that the
capacity of the resulting networks for storing such attractors was equal to the
capacity of a CAM trained using Eq. 2. The difference between Eqs. 2 and 5 is
that the target patterns are known in the first case, but unknown in the second,
where they are local maxima of y in a function that is learned from a sample of
(x, y) pairs. Note also that experiments have shown that the training data need
not contain a single example of any of the attractor patterns for the method to
work.

Parity Count Learning. When the inputs (both single variables and products
of variable subsets) are uncorrelated (i.e. orthogonal) and each input has an even
distribution of values, the weighted Hebbian rule produces the correct weight
values in a single pass of the data. When the distribution of values across each
variable is uneven, a better estimate of weight values may be made by taking
into account how often the input product on each weight is positive or negative
during learning. Each weight is set to equal the difference between the average
of the output y when the weight’s input is positive and when it is negative.

Let D+
j be the set of sub-patterns learned by wj that contain values whose

product is positive and D−
j be the set of sub-patterns learned by wj that contain
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values whose product is negative. Now let 〈y+〉 be the average value of y asso-
ciated with the members of D+

j and 〈y−〉 be the average value of y associated
with the members of D−

j :

〈y+〉 =
1

|D+
j |

∑
x∈D+

j

f(x) (6)

Similarly, 〈y−〉 is calculated as a sum over x ∈ D−
j . The weight calculation

is simply

wj =
1
2
(〈y+〉 − 〈y−〉) (7)

The averages may be maintained online so that the weight values are always
correct at any time during learning (rather than summing and dividing at the
end of a defined training set). W0 is set in a similar way. The Weighted Hebbian
calculation, w0 = 〈y〉 means that w0 is just the average of the output, y across the
training sample. This can be improved by taking into account the distribution
of patterns across each input.

w0 = 〈y〉 −
∑

j:wj∈W

wj

〈 ∏
x∈wj

x
〉

(8)

where x ∈ wj indicates the neurons connected to weight wj and
〈 ∏

x∈wj
x
〉

is
the average value across all input patterns of the product of the values of x
connected to wj .

3.3 Regression Rules

The weighted Hebbian update rule is capable of capturing the turning points
in a function, but cannot accurately reproduce the output of the function itself
across all of the input space. Such networks have an energy function1 and this
can be used as a regression function for estimating ŷ = f(x) in the form

ŷ =
∑
i

wj

∏
u∈Qi

u (9)

The weight values for the regression may be calculated either in a single off
line calculation or using an on line weight update rule.

Off Line Regression. To use ordinary least squares (OLS) [3] to estimate the
weights offline, a matrix X is constructed where each row represents a training
example and each column represents a weight. The first column represents W0

and always contains a 1. The remaining columns contain the product of the values
of the inputs connected by the column’s weight,

∏
x∈Qi

x. A vector Y takes the

1 The regression Eq. 9 is actually the negative of the energy function, which is min-
imised by applying the settling Algorithm 2.
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output values associated with each of the input rows and the parameters are
calculated using singular value decomposition:

β = (XTX)−1XT y (10)

where XT is the transpose of X, X−1 is the inverse of X and β becomes
a vector from which the weights of the MOHN may be directly read so that
w0 = β0 and the remaining weights take values from β in the same sequence as
they were inserted into the matrix X.

LASSO Learning Rule. The LASSO algorithm [18] may also be used to learn
the values on the weights of the MOHN. Each input vector is set up in the
same way as described for OLS, by calculating the product of the input values
connected to each weight and the coefficients generated by LASSO are read back
into the weights of the MOHN in the same order. LASSO performs regression
with an additional constraint on the L1 norm of the weight vector. The learning
algorithm minimises the sum:∑

x∈D

(f(x) − f̂(x)) + λ
∑
w∈W

|w| (11)

where λ controls the degree of regularisation. When λ = 0, the LASSO solution
becomes the OLS solution. With λ > 0 the regularisation causes the sum of the
absolute weight values to shrink such that weights with the least contribution
to error reduction take a value of zero. This not only allows LASSO to reject
input variables that contribute little, but also to reject higher order weights that
are not needed. LASSO can be used as a simple method for choosing network
structure by over-connecting a network and then removing all the zero valued
weights after LASSO regression has been performed.

On Line Learning. The weights of a MOHN can also be estimated on line
(where the data is streamed one pattern at a time, rather than being available
in a matrix as in Eq. 10) using a linear version of the delta learning rule, the
Linear Delta Rule (LDR):

wi = wi + α(f(x) − f̂(x))
∏
u∈Qi

u (12)

where α < 1 is the learning rate. Experimental results have suggested that one
divided by the number of weights in the network is a good value for α, i.e.
α = 1

|W | . This allows the correction made in response to each prediction error
to be spread across all of the weights.

The online learning algorithm is very similar to the perceptron (or MLP)
learning algorithm. The iterative nature of the algorithm allows for early stop-
ping to be used to control for overfitting with reference to an independent test
set. Algorithm 3 describes the learning process.
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Algorithm 3 . On Line MOHN Learning with the Linear Delta Rule.

Let Dr be a subset of the available data to be used for training the network
Let Ds be a subset of the available data to be used for testing the network
for all (x, f(x)) ∈ Dr do

Initialise the weights in the network using the parity rule of equation 7
end for
repeat

for all x ∈ Dr do
Update the weights using the delta learning rule of equation 12

end for
Let e be the root mean squared error from evaluating Ds with the model

until e is sufficiently low or starts to increase consistently

Note that the weights are initialised with the parity count learning rule, not
to random values as with an MLP. This is because there are no local minima
in the error function and so no need for random starting points. In cases where
the entire input, output space of the function may be noiselessly sampled, the
initialisation step will produce the correct weights immediately, without the need
for additional error descent learning. The learning algorithm will work without
the initialisation (the weights can be set to zero) but then requires more iterations
of the learning cycle.

3.4 Capacity of a MOHN Content Addressable Memory

Used as content addressable memories, MOHNs have a certain capacity for stor-
ing and perfectly recalling a number of distinct patterns. The size of this capac-
ity varies with the number of weights in the network and also depends on the
patterns being stored. Used as optimisation tools, MOHNs have a capacity for
storing a number of local and global maxima in a fitness function. Once the
number of optima in a function exceeds the capacity of a network, the ability of
the network to produce useful candidates for an evolutionary optimisation algo-
rithm degrades. For these reasons, it is useful to understand the limits of the
capacity of MOHNs for storing patterns and attractors. This paper addresses
those limits.

[19] report a capacity for binary valued order d networks of the order of
nd/ ln n, a figure that is also reported by [7]. Their definition of order differs
from that used here. It reflects the number of other inputs that are included in
the correlation between each neuron, meaning that their value of d is one less
than that used in this work. A Hopfield network, then, would be a first order
model as each weight from a neuron connects to one other neuron.

This section investigates the capacity of MOHNs of various sizes for storing
random patterns when the patterns are known and the learning is the simple
Hebbian rule of Eq. 2. The traditional method for experimentally testing the
capacity of a Hopfield network ([9] for example) is to load random patterns one
at a time and then test whether the network still maintains all of the patterns
learned so far as attractors. The process is given in Algorithm 4.
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To conclude that a pattern is no longer an attractor state in a network,
it is only necessary to find a single neuron that would change its value when
the network is running. Rather than the usual method of running a network
by updating the neurons in random order, the attractor test simply updates
each neuron in turn in a fixed order (avoiding the overhead of randomisation)
and stops as soon as a neuron changes value, indicating that the pattern is not
an attractor. When all neurons have been tested and none have changed, the
pattern is proved to be an attractor.

Figure 2 shows an example result for a network with up to 26 neurons, fully
connected at orders from one to five. The squares and associated error bars
show the mean and the range of the capacity for storing and perfectly recalling
patterns. The theoretical lower bounds stated by [19] are shown as red (the weak
lower bound) and green (the lower bound) lines.

3.5 Improving Capacity with Structure Discovery

To overcome the problem of exponential weight growth, a content addressable
memory can be incrementally built using the structure discovery method of
[12,15]. In this approach, weights are added to a network until it is able to
store the patterns in the training set and removed if they do not contribute any
improvement. The resulting network is sparsely connected, unlike those in Fig. 2,
having some weights at several different orders (hence the name, Mixed Order
Hyper Network).

Algorithm 4 . Testing the capacity of a MOHN.

P ← ∅ � Start with an empty pattern set
W ← 0 � Set all the weights in the MOHN to zero
repeat

Generate p /∈ P � Generate a random pattern that is not in the pattern set
W ← W + p � Allow the MOHN to learn the pattern
stop ← false
for all p ∈ P do

u ← p � Set the inputs to each pattern in the list in turn
u = settle() � Update the neurons in fixed order
if u �= p then � If any neuron value changes

stop ← true � Attractor is destroyed and capacity exceeded
end if

end for
if !stop then � No pattern was lost, so add new one to list

P ← P ∪ p � Add the pattern to the set
end if

until stop � End when a pattern is lost
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3.6 Experimental Example

To illustrate the stage capacity of a MOHN, a set of patterns representing the
written digits from 0 to 9 were created over 25 neurons. A traditional fully
connected Hopfield network with 300 s order connections can only store three or
four such patterns. The patterns to store are shown in Fig. 3.

Fig. 3. The written digits from 0 to 9 as 25 bit patterns to be used to test the dynamic
structure discovery algorithm applied to a CAM.

Firstly, static networks were tested to find the lowest order at which full
connections were needed to store the patterns. Networks of 25 neurons, fully
connected at all orders up to two, three and four all failed to store all 10 patterns
as stable attractors. A network with all weights connected at all orders up to
five was able to store the patterns. This network contained 53,131 weights. The
next step is to try and discover a network that will store the same patterns in
fewer weights.

The same patterns were then used to find a smaller structure that could store
them all using the structure discovery algorithm used in [15]. The algorithm was
able to find a network capable of correctly storing all of the patterns with a total
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of 362 weights, which is approximately the same number as found in a standard
25 neuron Hopfield network.

In principle, this approach gives MOHNs arbitrary storage capacity, as a
MOHN can represent any function in f : {−1, 1}n → R, and for any set of
non-neighbouring patterns, P there exists a function in which each member of
P is a local maximum. Of course, some functions may be difficult to discover
the correct structure for, and some may require so many weights that a solution
is impractical, but in principle, MOHNS can store arbitrary pattern sets. If P
contains neighbouring patterns (two patterns are neighbours if there exists an
input, ui such that flipping its value, ui ← −ui, switches from one pattern to
the other), then the neighbours will form a plateau where the output from the
function is the same for all points. Whether these states can be considered stable
attractors is a question of definition and implementation details of Algorithm 2.

If that algorithm only moves from a state to one with higher output, it will
stay stable in the first state of a plateau that it finds. This would mean that
seeding it with the target states would show them all to be attractors, but that
some were not accessible from nearby states. As neurons are updated in random
order, the same degraded pattern might produce a different pattern on the same
plateau on repeated trials. An additional step can be added to Algorithm 2 in
which neighbouring states of a first found attractor state are explored if they lie
at the same height. This can be done by recursively making single steps from
each point on the plateau until they have all been visited.

4 Analysis of Learning Rules

This section begins with a summary of the abilities and limitations of the differ-
ent learning rules presented in this paper. It then goes on to analyse the rules
and the resulting networks. Table 1 summarises some of the differences between
the methods. Due to the structure of the MOHN, all of the learning rules are
capable of reproducing the maximal turning points of the learned function, but
the Hebbian based rules do not minimise the error elsewhere in the function
space. The Hebbian rules learn in a single presentation of the data, so can oper-
ate in an on line mode without the need to iterate through the data set more
than once. The others require either on line iterations or the entire data set to
be present off line.

The weighted Hebbian rule is accurate only when a full sample of the
input/output space is available, so is of limited practical use as the parity count-
ing method gives more accurate estimates operating on weights independently
with a single pass through the data. The parity counting method provides good
starting weights for the linear delta rule. The following sections investigate dif-
ferent network structures in more detail.

4.1 Second Order Networks

When a MOHN has only second order connections, it is equivalent to a Hopfield
Neural Network (HNN) [6] and the Hebbian learning rule of Eq. 2 is the standard
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Table 1. Comparing four different MOHN learning rules in terms of the learning mode,
any regularisation that is possible, whether or not the training error is minimised, and
whether the training data is presented as input, output pairs (IO) or as patterns to
store in a content addressable memory (CAM).

Method Mode Reg Min. Err Data

Hebbian One shot None No CAM

Weighted hebb One shot None No IO

LDR On line Early stop Yes IO

OLS Off line None Yes IO

LASSO Off line L1-norm Yes IO

learning rule for a HNN. It is well known that HNNs are able to learn patterns as
content addressable memories, but that they suffer from the presence of spurious
attractors too. These spurious attractors may be reduced by defining an energy
function for the network in which the patterns to be stored as memories are
local maxima. This may be done using a Hamming distance based function
and previous work [11,17] has shown that using the weighted Hebbian update
rule of Eq. 5 and such a function on a second order MOHN (or equivalently, a
HNN) is sufficient to produce a content addressable memory in which the turning
points of the function are the memories to be stored. The capacity of a HNN for
storing patterns is the same if the patterns are loaded directly with the Hebbian
learning rule as it is when the patterns are learned from a Hamming distance
based function.

To build the Hamming distance based function, denote the set of patterns to
be stored as T:

T = {t1, . . . , ts} (13)

and define a set of sub-functions, f(x|tj) as a weighted Hamming distance
between x and each target pattern tj in T as

f(x|tj) =
∑ δxi,tji

n
(14)

where tji is element i of target j and δxj ,tji is the Kronecker delta function
between pattern element i in tj and its equivalent in x. The function output
given an input pattern, f(x) is the maximal output across all the sub-functions
given an input of f(x).

f(x|t) = maxj=1...s(f(x|tj)) (15)

By generating random input patterns, evaluating each using Eq. 15 and then
using the LDR of Eq. 12 to learn each input, output pair sampled, a network
with attractors at each member of T is learned. The network has the additional
quality that as the number of samples learned increases, the number of spurious
attractors in the network decreases.
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To test this claim, experiments were run in which a 100 neuron MOHN was
trained on a function that contained four true attractor states. Figure 4 shows the
average results of running 100 trials in which the number of spurious attractors
and the error of the network were measured for each iteration of the training
data, which was a random sample of size 20,000 from the Hamming distance
based function of Eq. 15.
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Fig. 4. As the number of learning iterations increases, the training error decreases as
does the number of spurious attractors in the model.

More generally, the reduction in the number of spurious attractors depends
on the ability of the structure of the network to represent the underlying function
in which the only turning points are the desired attractor patterns. The better
the network can represent the function, the fewer spurious attractors there are.
Additionally, the linear delta rule allows a network to increase its capacity over
the equivalent trained with the Hebb rule. Figure 5 shows the average and stan-
dard deviation of the capacity of networks from size 10 to 40, calculated from
50 trials of each learning rule at each network size.

Researchers have shown how the weights of a HNN can be designed to rep-
resent the travelling salesman problem [5,21] and other problems such as graph
colouring [2]. These approaches are limited by the fact that the weights must be
chosen by hand to reflect the constraints of the problem to be solved. By training
a HNN (or a MOHN) by sampling from a fitness function, it is now possible to
build a network to represent any problem with a fitness function that can be
evaluated, not just those that are amenable to having their weights set by hand.

4.2 Full Networks

When the data are noise free, a network is fully connected and the data sample
is exhaustive (i.e. it covers every possible input pattern once), the weighted
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Fig. 5. The mean and standard deviation of the capacity of a fully connected Hopfield
Network trained with the Hebb rule and the Linear Delta Rule.

Hebbian rule of Eq. 5 (with |D| = 2n) will produce weights which reproduce the
target function perfectly. In such cases, the product

∏
u∈Qi

u provides a basis
function for f : {−1, 1}n → R. This basis function is very similar to the well
know Walsh basis [1,20].

A Walsh representation of a function f(x) is defined by a vector of para-
meters, the Walsh coefficients, ω = ω0 . . . ω2n−1. Each ωj is associated with the
Walsh function ψj . The Walsh representation of f(x) is constructed as a sum
over all ωj . In the sum, each ωj is either added to or subtracted from the total,
depending on the value of the Walsh function ψj(x) which gives the function for
the Walsh sum:

f(x) =
2n−1∑
j=0

ωjψj(x) (16)

A Walsh function, ψj(x) returns +1 or −1 depending on the parity of the
number of 1 bits in shared positions across x and j where j is the binary rep-
resentation of the integer j. Using logical notation, a Walsh function is derived
from the result of an XOR (parity count) of an AND (agreement of bits with a
value of 1):

ψj(x) = ⊕n
i=1(xi ∧ ji) (17)

where ⊕ is a parity operator, which returns 1 if the argument list contains an
even number of 1 s and −1 otherwise. The Walsh transform of an n-bit function,
f(x), produces 2n Walsh coefficients, ωj , indexed by the 2n combinations across
f(x). Each Walsh coefficient, ωj is calculated by

ωj =
1
2n

2n−1∑
x=0

f(x)ψj(x) (18)
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The weight values in a fully trained MOHN are equal in magnitude to the
Walsh coefficients of the same index, but that they differ in sign when the weight
order is an odd number. That is,

ωj = p(ωj)wj ∀wj ∈ W (19)

where p(ωj) is the parity of the order of ωj such that:

p(ωj) =

{
1 if the order of i is even
−1 otherwise

(20)

This is because the Walsh function returns a value based on a parity count of
the number of variables set to one across the input variables that are connected
to a given coefficient, as shown in Eq. 17. The parity function returns 1 if the
number of variables with a value of one is even and −1 otherwise. The MOHN
uses the product of those same values, which evaluates to −1 whenever there
is an odd number of inputs set to −1. The MOHN indices match the Walsh
coefficient indices because they both use the same method of deriving the index
number from the binary representation of the connections described in Sect. 2.

As a fully connected MOHN provides a basis for all possible functions in
f : {−1, 1}n → R, then it follows that any function with coefficient values
of zero may be perfectly represented by a less than fully connected MOHN
so providing the correct structure can be found, a MOHN may represent any
arbitrary function.

4.3 Discovering Network Structure

The structure of a MOHN is defined by W , which is a subset of all possible 2n

weights. As noted above, a fully connected second order network implements a
HNN and a fully connected network at all orders forms a basis of all functions
f : {−1, 1}n → R. Any other pattern of connectivity is also possible, for example
a first order only network is equivalent to a perceptron, or a multiple linear
regression model. Adding higher order weights increases the power of the model
to represent more complex functions.

Discovering the correct structure for the network is both challenging and
instructive, compared to the same task when using an MLP, which is quite
straight forward, but done in the dark. The question of discovering structure
in functions from samples of data is of particular importance in the field of
metaheuristic optimisation, where it is called linkage learning (see [4,8]).

The correct structure for a function may be discovered from the training
data using an iterative approach of adding and removing weights as training
progresses. The basics of the structure discovery algorithm are to train a partial
network, test the significance of the weights it contains, remove those that are not
significant, then add new weights according to some criteria. The weight picking
criteria chosen for this work are based on maintaining a probability distribution
over the possible weights, which is updated on each round of learning so that
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connection orders and neurons that have proved useful in previous rounds have a
higher probability of being picked in subsequent rounds. The process is described
briefly in [12] and in more detail in [15].

5 Experimental Results

In this section, the learning rules described in this paper are compared with each
other and with a standard multi layer perceptron (MLP) for the speed at which
they learn. The Hamming distance based function of Eq. 15 was used for these
tests as it is possible to generate arbitrary functions containing a chosen number
of turning points at random locations. This allows the different methods to be
tested across thousands of different functions of varying degrees of complexity.

5.1 Speed Against Complexity

One way to vary the complexity of a function is to vary the number of turn-
ing points it contains. This section describes a set of experiments designed to
measure the speed of learning of each of the MOHN learning rules and an MLP
as the complexity of the function to be learned varies. Each single experiment
involved training a MOHN and an MLP on a data set generated from a function
with a random number of turning points. The same data was used to train three
different MOHNs, one with each learning rule from OLS, LASSO and LDR. The
function had 15 inputs and the MOHNs were fully connected up to order three,
giving them 576 weights. The MLP has only 10 hidden units, giving it only 176
weights.

A sample of 580 random points was used for training each network. For the
iterative learning methods (all except OLS) a target error of 0.01 was used as
a stopping criteria, hence the measure of interest was time taken to reach a
training error of 0.01. This process was repeated 1000 times, each with a new
function with a number of turning points between 1 and 30.

Figure 6 shows the results. All methods except the MLP learned the function
in a constant time, regardless of the degree of complexity. The MLP was able
to learn the single turning point function (i.e. linear function) in less time than
it was able to learn the more complex functions. The function with two turn-
ing points was also faster than those with more. After two turning points, the
learning time for the MLP became constant. Regardless of the complexity of the
function, the MLP always took considerably longer, followed by OLS. The LDR
and LASSO algorithms took similar amounts of time and were the fastest.

5.2 Speed by Network Size

Another set of similar experiments related the training speed of each method to
the size of the network. The number of inputs to a network was varied from 5 to
15 and 1000 trials were run. The mean squared error of the result of performing
OLS was used as the stopping criteria for the MLP and the MOHN as it was
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trained with LDR, ensuring that all models had the same level of accuracy.
Figure 7 shows the results. OLS is known to have a time complexity of O(np2)
where n is the number of data points and p is the number of variables. LASSO
and LDR were of the same order, but the algorithms ran in less time. The MLP’s
training time grew exponentially with the number of variables in these particular
experiments. As before the MOHN models all reached the target training error
faster than the MLP.
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training epochs, comparing an MLP with the Linear Delta Rule training a MOHN.

Error Descent Rate. The difference in training speed between the MOHN
and an MLP was investigated further by recording the average error by training
epoch for the first twenty passes through the training data. Figure 8 shows the
average error on each pass of the training data from 1000 repeated trials on
functions of varying complexity. The error bars show 1 standard deviation from
the mean. Note that the MOHN error drops faster and that there is far less
variation across trials (the error bars for the MOHN are sufficiently short that
they sit inside the marks).

The improved learning speed of the MOHN and the slower, more varied
speed of the MLP may be explained by the fact that the MLP combines fitting
parameter values with feature selection. Recently, [14] provided an insight into
the phases of MLP training, showing that early training cycles are taken up
with fixing the role of the hidden units and later cycles then fit the parameters
within the constraints of the features encoded by those hidden units. The MOHN
does not have hidden units and so only needs to fit parameter values to its
fixed structure. Of course, that structure needs to be discovered, but the task of
structure discovery and parameter fitting are separated, unlike the case for the
MLP.

Another consequence of the MLP’s dual learning task of fitting both func-
tion structure and regression fit is that the error function contains local minima.
These occur when the hidden units encode a suboptimal set of features and the
network fits weight values to them. This is commonly solved by re-starting the
training process from a different random set of initial weight values. The MOHN
error function does not contain local minima, so the weights do not need to be
randomised before learning, as shown in Algorithm 3. To illustrate this point, a
final set of experiments compared an MLP trained with error back propagation
to a MOHN trained with the LDR on a function designed to contain local minima
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Fig. 9. Traces of training error over 200 different attempts at training an MLP on a
concatenated XOR function. Note the variation in convergence time and the presence
of a number of failed attempts after 2000 epochs.
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Fig. 10. Traces of training error over 200 different attempts at training a MOHN on a
concatenated XOR function. Compare both the scale of the error and the number of
training epochs involved with the same plot for the MLP in Fig. 9.

in its cost function. The function to be learned was a concatenation of XOR pairs
such that each xi where i is even is paired with xi+1 to form an XOR function.
The function output is the normalised sum of the XOR of the pairs, so 101010
would produce an output of one and 110011 would produce zero. Figure 9 shows
the traces of 200 MLPs started with random weights, each trained for 2000 cycles
through the training data. The variation in error descent is clear, with some
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networks converging quickly, some taking many training epochs to converge,
and some still stuck in local minima after 2000 epochs.

The MOHN networks were trained on random samples of input, output pairs.
Figure 10 shows the trace of the training error during 200 attempts at learning
the same XOR based function as that in Fig. 9 using a MOHN with the LDR.
The variation is not due to random starting points—all networks start with
weights at the same point—but is due to the fact that the training data is a
small random subset of the full input space. Note that there are no traces that
indicate a local minimum; all go to zero error.

6 Summary and Future Directions

In the space f : {−1, 1}n → R, mixed order hyper networks are universal function
models. They may be trained from a sample of data to act as either a regression
function that attempts to fit the function that underlies the data across the
entire function space or just to capture the function’s turning points as energy
minima. Learning may be off line, in which case all of the data needs to be
available at one time, or on line in situations where data is streamed or the
network structure is changing and existing weights need to be updated. This
paper presented five learning rules designed to cover both on line and off line
learning, and both regression and content addressable memory learning. Other
learning methods might also be considered such as ridge regression or LARS,
but that is left for future work.

This paper has only presented networks for function learning, but they may
also be used for other machine learning tasks, all of which present interesting
topics of research. By treating some of the neurons as inputs and some as out-
puts, a MOHN can implement a classifier. By introducing a link function that
is the exponential of the network output, it is possible to model a Boltzmann
distribution, turning the MOHN into a Markov random field. A MOHN used as
a content addressable memory can also be trained so that the attractor states
are centroids (or archetypes) in a clustering task. A MOHN can also be trained
as a surrogate fitness function and there are methods for searching the resulting
function for optimal points [13].

The issue of MOHN structure discovery was also raised. The experiments
presented in this paper mostly worked on the assumption that the networks in
question contained weights of sufficient order to capture the functions on which
they were trained. This becomes increasingly difficult as the number of inputs
grows. Problems with large numbers of inputs require a structure discovery phase
to be carried out as part of the training process. See [15] for more details on
structure discovery.

In conclusion, with a given network structure, training a MOHN is faster and
has less error variance across trials than training with an MLP. Additionally, the
training algorithm has no local minima when training a fixed structure MOHN,
making training more reliable than that of an MLP.
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Abstract. The action prediction of pedestrians significantly contributes
to an intelligent braking system in cars; knowing that the pedestrians will
run in several seconds such as for crossing streets, the cars can start brak-
ing in advance, to effectively reduce the risk for crash accidents. In this
paper, we propose a method to predict how the pedestrian act (run or
walk) in the future based on preindication in video frames detected by
only appearance-based image features. We empirically mine the distinc-
tive frames that precede the target action, ‘running’ in this case, and are
effective for predicting it in the framework of feature selection. By using
the most effective frames, we can build the action prediction method
by exploiting the image features extracted at those frames. As to the
image feature extraction methods, we evaluate two types of features in
our method, one is GLAC (Gradient Local AutoCorreration) and the
other is HOG (Histogram of Oriented Gradient). In the experiments,
the effective frames are successfully found around 0.37 s before running
action by using GLAC feature; this is not the case of HOG. We also show
that the results are closely related to human motion phases from walking
to running via biomechanical analysis.

Keywords: Action prediction · Feature selection · Intelligent transport
system · Image feature extraction

1 Introduction

According to Japanese traffic accident statistics [1], the number of pedestrian
accidents are not decreasing while total number of accidents are decreasing.
Moreover, the fatality rate in the pedestrian accidents are five times higher than
the other accidents. Therefore, prevention of the pedestrian accidents is one of
the most urgent issue in our society. The statistics [1] also reports that 70 %
of the fatal pedestrian accidents occurred during crossing streets, and thus it is
particularly important to safely detect/recognize those crossing pedestrians.

c© Springer International Publishing AG 2017
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The fatality risk of pedestrian accidents is actually affected by the impact
speed [2]: it is about 4 % at the impact speed of 40 km/h while it increases to
about 10 % at 50 km/h and 20 % at 60 km/h. Thus, roughly speaking, the fatality
risk decreases by 10 % as the impact speed decreases by 10 km/h. In the situation
that automatic emergency braking (AEB) system works on 6 m/s2 as defined by
Euro-NCAP [3], it also means that if a car brakes 0.5 s earlier, the fatality risk in
pedestrian accidents would be decreased by 10 %. For realizing early braking, it
is not sufficient only to detect pedestrians, but it is highly required to recognize
the pedestrian action of high risk, such as crossing street with running, as early
as possible.

In the last decade, pedestrian detection is one of the most successful appli-
cations in the computer vision and pattern recognition fields. For example,
Dalal and Triggs attained over 99 % detection rate by introducing HOG fea-
ture [4], and very recently it is further improved by deep CNN [5]. However, as
described above, just detecting pedestrians is not sufficient for reducing the risk
of pedestrian-car accidents. Keller and Gavrila detected crossing people by ana-
lyzing pedestrian movement which can be distinguished by the trajectory in the
feature space [6]. Although they showed promising results such as the accuracy
of 80 % in classifying the correct pedestrian action about 570 ms before the event,
it is generally difficult to estimate the precise movement of pedestrians from on-
board camera due to its self-motion (shaking). Reddy and Krishnaiah focused
on a running pose to detect the pedestrian crossing streets [7]. These approaches
detect the change of pedestrian action from walking to running with the accu-
racy of 92 %, but the detection is performed after the pedestrian already starts
running, which is considered to be too late to contribute toward early braking.

We tackle a challenging problem to predict a high risk human action before
it actually occurs. In the realistic situations, we have to pay careful attention
to the pedestrians that cross a street with suddenly running and such (sudden)
running is regarded as a high risk action to be treated by the AEB system
with early braking. Therefore, in this paper, we address the problem to predict
the (sudden) running action of pedestrians by mining the sign for that action
which preindicates the running actions beforehand. In addition, we employ an
appearance-based approach using only static image features, though motion fea-
tures might be suitable for recognizing actions, since it is quite hard to extract
reliable motion features from a moving on-board camera. There is a primary
question how early we can predict the running action, or more basically, whether
such sign (preindicator) exists or not, and the secondary question might be which
image feature can extract the preindicator. We empirically answered these ques-
tions in the framework of feature selection and show the effective preindicator
from the quantitative viewpoint. In our previous paper [8], we only examined
gradient local auto-correration feature (GLAC) [9], and did not tested other
image features. This paper gives a complementation of our previous paper by
applying HOG feature for comparison to answer the second question.
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2 Appearance Based Action Prediction

In this section, we detail the action prediction method using only static image
features. This method is based on the assumption that the action preindicator
can be sufficiently described by distinctive pedestrian shape, not motion itself.

2.1 Static Image Feature

To characterize the human shape in detail, we employ gradient local auto-
correlation (GLAC) method [9]. The GLAC method extracts co-occurrence of
gradient orientation as second-order statistics while HOG [4] is based only on
first-order statistics of occurrence of gradient orientations. Suppose the pedes-
trian is detected by arbitrary methods and the bounding box enclosing the pedes-
trian is provided as shown in Fig. 1. As in the common approach such as of
HOG [4], the bounding box is spatially partitioned into regular grids of 3× 3 at
each of which the GLAC features are extracted, then the final feature vector is
constructed by concatenating those feature vectors; the setting of 9 orientation
bins for gradients and 4 spatial co-occurrence patterns produces GLAC features
of 324 dimensionality, and the final feature is formed as a 2916 = 324 × 3 × 3
dimensional vector.

The spatial grids of 3× 3 is much coarser compared to HOG-related methods.
The GLAC method can characterize the human shape more discriminatively due
to exploiting co-occurrence and thus even such coarser grids are enough for static
image features. In addition, the coarser grids render robustness regarding spatial
position of human shape; that is, the features are stably extracted even for miss-
aligned bounding boxes. On the other hand, 3 × 3 grids are considered as the
coarsest one for capturing the human shape; head, torso, two arms and two legs
are roughly aligned to respective spatial grids.

Fig. 1. Static image feature extraction by using GLAC method [9]. The bounding box
is partitioned into 3×3 regular grids at each of which GLAC image feature is extracted
and then they are concatenated into the final feature vector.

2.2 Action Prediction

Based on the time-series sequence of image features extracted in the bounding
boxes, we predict the action which will occur in the near future.
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Fig. 2. Action prediction framework. We consider a T -frame subsequence as a unit.
The action of running at t = 0 is predicted by using D-frame features preceding it.

We consider the subsequence of T frames as a unit which are represented by
image feature vectors as described in the previous subsection. Then, we pick up
D frames (feature vectors) from them, [t − D + 1, t] (−T + D <= t <= 0), to
predict the action which will occur at the T -th frame indexed as time 0 (Fig. 2).
Those D feature vectors are concatenated to single feature vector of relatively
high dimension (Fig. 2) which is finally passed to a linear SVM classifier for
predicting whether running will occur at time 0 or not. The concatenated feature
indirectly encodes motion information of pedestrian during D frames. Because
we can not know which timing {t,D} produces better performance for predicting
the running action, those parameters are empirically determined based on data
from the quantitative viewpoint. It is obvious that the smaller t is preferable
since it provides the earlier prediction; on the other hand, t = 0 means on time
classification and does not give any prediction at all. And from the computational
viewpoint, the smaller D is preferred.

3 Experiments

This section shows the experimental procedure for determining the parameters
{t,D} in the proposed method (Sect. 2.2) as well as evaluating it. For comparison,
we also examined in the same procedure HOG feature of 2772 dimensional vector,
which consists of 9 orientation bins on the block of 2× 2 cells where the bounding
box is partitioned into 8 × 12 cells.

3.1 Dataset

The dataset that we use contains 57 video sequences of 12 children captured by
a (fixed) video camera with 30 fps in a gymnasium (Fig. 3)1. Children behave
unpredictably in context and thus are regarded as the subjects to be carefully
paid attention in a traffic scene. They first walk and then suddenly run in an
arbitrary timing. The bounding boxes enclosing them are manually annotated
since the pedestrian detection is out of our focus in this study. In addition, the

1 This experiment is approved by the Ethical Review Board of Mazda Motor Corpo-
ration and the informed consent of all subjects were also obtained.
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Fig. 3. Sampling positive and negative subsequences from a whole sequence.

frame when the subject starts running is also manually indicated; it is denoted
as trun (Fig. 3). The length of the subsequence is set to T = 20, since all the
subjects of 57 sequences are definitely walking at the frame of trun − 19; so the
sign preindicating running is supposed to exist within this period from trun−19
to trun.

The subsequence of T = 20 frames that ends at trun is regarded as a positive
sample, while we can regard as negative samples all the other subsequences except
the ones overlapping the positive subsequence with over 10 frames. Note that we
thereby obtain one positive sample and about 50 to 100 negative samples from
each sequence.

3.2 Evaluation

The prediction performance is measured by leave-one-sequence-out cross vali-
dation, as follows. At the i-th iteration (i = 1, .., 57), we train the linear SVM
classifier [10] over the samples excluding the ones drawn from the i-th sequence.
Then, the samples from the i-th sequence are evaluated by applying the classifier.
In this case, those evaluated samples are highly imbalanced due to containing
only one positive sample. Therefore, we regard the i-th sequence as correctly
classified only when all the sample from that sequence are successfully classified,
which is a relatively hard criterion. In an overall evaluation, we measure the
ratio of the correctly classified sequences out of 57 ones.
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As to the prediction method (Sect. 2.2), we examined 210 pairs of {t,D}
parameters: considering T = 20, the prediction timing t varies from -19 to 0,
and accordingly the period D can be changed from 1 to t + 20.

4 Experimental Results

The results by GLAC feature are firstly described and then those of HOG are
shown.

4.1 Results by GLAC Feature

Figure 4 shows the classification performance for one frame duration (D = 1).
We can see that the top accuracy was obtained at t = −11 and −7. This result
suggests that the frames at t = −11 and −7 include distinctive features to
preindicate running. It should be noted that though this task is to predict the
running action at t = 0, the performance at t = 0 (on-time classification) is not
high. This is because the pedestrians definitely run at t = 0 and some negative
samples also contain the running action at t = 0, making hard to classify at
t = 0.
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Fig. 4. Classification performance of one frame duration D = 1 by GLAC.



Preindication Mining for Predicting Pedestrian Action Change 365

Duration D
1 5 10 15 20

T
im

in
g 
t

-19

-15

-10

-5 

0  50

60

70

80

90

95

A
cc

ur
ac

y 
(%

)

Fig. 5. Classification performance for all parameter pairs by GLAC.
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Fig. 6. Classification performance for timing t with maximizing over D by GLAC.
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Fig. 7. Classification performance for duration D = 2, 3, 8 by GLAC.
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Fig. 8. Classification performance of one frame duration D = 1 by HOG.

Figure 5 shows the results for all parameter pairs of {t,D}. The best accuracy
96.5 % was attained at t = −3 with D = 14, 16 and t = −2 with D = 18; the
whole sequence (t = 0,D = 20) did not perform the best, exhibiting 94.7 %.
However, t = −2 and t = −3 are not preferable for our purpose, early prediction.

As shown in Fig. 4, the distinctive features are found at t = −7 and −11, and
thus we can push back the prediction earlier. For early prediction, the timing t
is rather important than the duration D, and we show in Fig. 6 the best per-
formance at each t by picking up the maximum accuracy over D. It apparently
shows that the performance is saturated at t = −11, slightly increasing after
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t = −11; for example, 93.0 % is attained at t = −10 with D = 8 which is close
to the best 96.5 % at t = −3. However, a pedestrian has to be tracked through
8 frames for the duration D = 8, which is not preferable for on-board (moving)
cameras. Figure 7 shows the classification accuracy and timing with the dura-
tion D = 2, 3 and 8. 91.2 % is attained at t = −11 with D = 3 which requires
only 3 frame duration. Thus, we can conclude that it is possible to predict the
action of running at about 0.37 s. earlier (corresponding to t = −11) with over
90 % accuracy. Moreover, if we can compromise with the classification accuracy
of 89.5 %, the running action can be predicted at about 0.4 s. earlier (t = −12)
by using only 2 frame duration.

4.2 Results by HOG Feature

Figure 8 shows the classification performance for one frame duration (D = 1).
The highest accuracy was obtained at t = −7 and t = −6, however it is lower
than 80%, while GLAC feature obtained 85.9%. We can also see a weak peak at
t = −10, which is not as significant as the peak at t = −11 obtained by GLAC
feature. This result indicates that the preindicator features at t = −11 could not
find by using HOG feature, and t = −7 was the earliest prediction timing for
HOG feature with duration D = 1.

Fig. 9. Classification performance for all parameter pairs by HOG.
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Fig. 10. Classification performance for timing t with maximizing over D by HOG.

tR0 tR1 trun

Fig. 11. Biomechanical analysis for transition from walking to running.

Figure 9 shows the results for all parameter pairs of {t,D} with HOG feature.
The best accuracy 93.0 % was attained at t = −5 with D > 12 and the whole
sequence (t = 0,D = 20).

As shown in Fig. 8, the distinctive features are found at t = −7 and −8.
Since the timing t is rather important than the duration D, and we show the
best performance at each t by picking up the maximum accuracy over D in
Fig. 10. It apparently shows that the performance is saturated at t = −9, slightly
increasing after t = −8; for example, only 87.0 % is attained at t = −10, and
the best accuracy 93 % was attained at t = −5. These results indicate that the
preindicator could not be found in earlier timing by using HOG feature.
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Fig. 12. Histogram for tR0 and tR1 compared to trun.

5 Biomechanical Analysis

During the transition from walking to running, the visually most distinctive form
is found when the head reaches the minimum height. After that, the pedestrian
jumps up a little bit and subsequently the phase is completely changed into run-
ning. We call this point as tR1 (see Fig. 11). On the other hand, when a pedestrian
starts running from walking, the form accordingly changes in order to facilitate
its acceleration. At that point, the pedestrian’s posture is leaning forward as
well as stepping and shaking the arms more largely. This point is denoted as
tR0 (see Fig. 11). The form at tR0 is less salient compared to that at tR1, but
tR0 precedes tR1. For comparing the above results (Sect. 4) to these biomechan-
ically distinct points, we manually annotated tR0 and tR1 in the sequences. The
histograms for those timing points are shown in Fig. 12. Those timing points
are not diverse across the pedestrians but relatively concentrated around the
means. This result shows that those distinct points defined from the biomechan-
ical viewpoint are also regarded as general measure for predicting running action.
Those means are t̄R0 = trun − 0.37 s. and t̄R1 = trun − 0.19 s, corresponding to
t = −11 and t = −6, respectively. These are surprisingly coincident with the
points t = −11 and −7 which are qualitatively obtained in Fig. 4. Thus, we have
shown that those quantitatively obtained timing points are also biomechanically
meaningful.
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6 Conclusion

We have proposed a method to predict the running action of pedestrians at
earlier timing before the action actually occurs. The method is based on the
appearance-based image features to extract distinctive forms of the pedestrian
in transition from walking to running. In addition, the motion information is
naively encoded via aggregating (concatenating) the consecutive frame-based
features in a time-series sequence, with the two important parameters which
indicate the timing and duration, respectively. In the experiments, we examined
the performance of our method with two features, GLAC and HOG. By using
GLAC, we could successfully determine those two parameters, showing favor-
able performance of prediction; the running action can be predicted at about
0.4 s before, while HOG enables the prediction at only 0.2 s before. By further
analyzing the postures from the viewpoint of biomechanics, the prediction tim-
ing is shown to be closely related to the biomechanically distinct form. GLAC
can effectively extract the distinct form from the image sequence in ealier tim-
ing, while HOG does not. The results indicate that extracting co-occurrence of
gradient orientation as second-order statistics by GLAC is more effective than
extracting only first-order statistics of occurrence of gradient orientation such as
HOG. The experiments performed in this paper are limited due to such as indoor
and fixed camera. Our future works include to apply the proposed method to
the motion sequences which are captured in more realistic situations.
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Abstract. An artificial neural network is modeled by weighting between
different neurons to form synaptic connections. The nonlinear line attrac-
tor (NLA) models the weighting architecture by a polynomial weight set,
which provides stronger connections between neurons. With the connec-
tions between neurons, we desired neuron weighting based on proximity
using a Gaussian weighting strategy of the neurons that should reduce
computational times significantly. Instead of using proximity to the neu-
rons, it is found that utilizing the error found from estimating the out-
put neurons to weight the connections between the neurons would pro-
vide the best results. The polynomial weights that are trained into the
neural network will be reduced using a nonlinear dimensionality reduc-
tion which preserves the locality of the weights, since the weights are
Gaussian weighted. A distance measure is then used to compare the
test and training data. From testing the algorithm, it is observed that
the proposed weighted NLA algorithm provides better recognition than
both the GNLA algorithm and the original NLA algorithm.

Keywords: Nonlinear line attractor · Multidimensional data · Neural
networks · Machine learning

1 Introduction

Artificial neural networks are a well-researched area, encompassing several dif-
ferent types architectures used to model biological neural networks in the brain.
Most networks that have been researched are feed-forward neural networks,
which propagate signals through several layers of neurons to create an output.
The network that we will be focusing on is the attractor neural network, which
are usually recurrent neural networks that connects neurons in the same layer
for processing. There are different types of attractor networks that are available,
like the fixed point attractor, also known as the Hopfield network [1]. These net-
works use the minimization of an energy function to get the network to converge
to a desired state. Therefore given a specific data point with any number of
distortions, the network should be able to attract towards a desired state, which
is given by the fixed point. Other types of attractor networks include the cyclic
c© Springer International Publishing AG 2017
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attractor network [2] and the line attractor network [3]. The attractor network
that is of most interest is the line attractor network.

The line attractor, which differs from the fixed point attractor, attracts a
given set of data points towards a line rather than a specific point. This type of
attractor is useful in encompassing manifolds that are not contained spherically,
but are elongated in shape. Due to the line attractor being created, estimation
of data points is more useful than a fixed point attractor due to attraction to a
specific point on the line rather than the only given point of a manifold. With the
high dimensionality found in neural network, it is found that using a nonlinear
line to encompass the manifold is better for modeling the manifold. We utilize
the nonlinear line attractor as the basis for the research in this paper.

1.1 Biological Implications

Most recurrent autoassociative networks are interconnected together with all
other nodes. In biological structures, neurons found in the brain are connected
only to the surrounding neurons rather than every neuron found in the brain.
These local connections are even weighted based on the proximity of the neurons
towards each other. Tononi et al. [4] found that most networks are able to reduce
the number of connections in the network while preserving the accuracy of the
network. Guido et al. [5] found that even though part of the brain is damaged,
due to modularity found in the structures of the visual cortex, the brain is able
to retrain the systems to accommodate new data.

Even with the proximity of the neurons, there are connections that should
be kept due to the least amount of error from the neuron. With proximity of
the neurons, close neurons will be preserved due to the closeness of value, but
due to the reduction of error in the neurons, the network will favor the least
error in the network. This implication can be found in neural networks in the
brain, since connections that have the least error should be weighted higher than
connections that contain more error.

1.2 Modularity in Neural Networks

The local connectivity is able to create modularity in the network which still
preserves the accuracy of the network. Happel et al. [6] found that different
configurations in the network using modularity is able to improve the recogni-
tion of the network, since the redundancy, especially redundancy in error, found
in the network is reduced. Gottumukkal et al. [7] used modularity in principal
component analysis to create and recognize sub-images to recognize the whole
image. Gomi et al. [8] found specific modules in the network which learns only
portions of data to aid in the completion of the task. Auda et al. [9] used Cooper-
ative Modular neural networks, which uses overlap between modules, to further
improve the classification accuracy. Modularity is able to reduce the number of
computations while improving the recognition capabilities of the network.

The base neural network that is researched in this paper is the nonlinear
line attractor by [10], which has applications in pattern association [11], pose
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and expression invariant face recognition [12], and other machine learning tasks.
Modularity and proximity weighting can be used to improve the capabilities of
the network by reducing the redundancies found in the network and improving
computational time. We will first look at the proximity weighting of the Gaussian
weighting strategy and then implement the error-based weighting strategy, which
should reduce the weights and improve the accuracy of the network.

The main contributions of this paper are:

– Gaussian weighting strategy to the Nonlinear Line Attractor Network to intro-
duce modularity

– An error-based weighting strategy to the Nonlinear Line Attractor Network
for comparison

– Reduction of the computational complexity to improve the convergence time
of the NLA architecture

– An improved scenario for using the Nonlinear Dimensionality Reduction for
object recognition.

2 Nonlinear Line Attractor

The nonlinear line attractor network trains patterns using a set of interconnected
neurons with polynomial weighting. This network should provide better recogni-
tion than point and line attractor networks due to the stronger connection made
through the polynomial weighting.

Let the response x(i,s) of the ith neuron for the sth pattern due to the exci-
tations x(j,s) from other neurons in a fully connected recurrent neural network
with N neurons be expressed as:

x(i,s) =
1
N

N∑
j=1

Λij(x(j,s)), for 1 ≤ i ≤ N, (1)

where Λij is defined by a kth order nonlinear line as:

Λij(x(j,s)) =
k∑

m=0

w(m,ij)x
m
(j,s) for 1 ≤ i, j ≤ N (2)

The equation provides the best fit line of the data points in a dataset for a
given class as shown in Fig. 1. The mth order term of the resultant memory wm

can be expressed as:

Wm =

⎛
⎜⎝

w(m,11) . . . w(m,1N)

...
. . .

...
w(m,N1) . . . w(m,NN)

⎞
⎟⎠ , for 0 ≤ m ≤ k, (3)

To calculate the weights of the system, we can use error minimization of out-
put. To minimize the least squares error in the weight matrix, we can formulate
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the following equation, which yields the optimum weight set.

Eij [w(0,ij),w(1,ij), ..., w(k,ij)] =
P∑

s=1

[x(i,s) − Λij(x(j,s))]2, for 1 ≤ i, j ≤ N,
(4)

To minimize the least squares error, we must equate the derivative of the
error with respect to the weight to be zero, as shown in the following equation.

δEij

δw(m,ij)
= 0∀m = 0, 1, . . . , k, (5)

We can then find that the equation can be reduced to a set of linear equations
based on the order of the polynomial, as shown below.

w(0,ij)

P∑
s=1

x0
(j,s) + w(1,ij)

P∑
s=1

x1
(j,s) + . . .

+ w(k,ij)

P∑
s=1

xk
(j,s) =

P∑
s=1

x(i,s)x
0
(j,s)

w(0,ij)

P∑
s=1

x1
(j,s) + w(1,ij)

P∑
s=1

x2
(j,s) + . . .

+ w(k,ij)

P∑
s=1

xk+1
(j,s) =

P∑
s=1

x(i,s)x
1
(j,s)

...

w(0,ij)

P∑
s=1

xk
(j,s) + w(1,ij)

P∑
s=1

xk+1
(j,s) + . . .

+ w(k,ij)

P∑
s=1

x2k
(j,s) =

P∑
s=1

x(i,s)x
k
(j,s)

(6)

Once the nonlinear best fit line is created to model the data points, we can
then create limits to obtain the variance of the manifold, thus encompassing the
entire dataset. This is done by creating an activation function, as shown in Eq. 7.

Φ(Λij [x(j,s)(t)]) ={
x(i,s)(t) if ψ(ij,−) ≤ {Λij(x(j,s)(t)) − x(i,s)(t)} ≤ ψ(ij,+)

Λij(x(j,s)(t)) otherwise

(7)

where

Λij(x(j,s)(t)) =
k∑

m=0

w(m,ij)x
m
(j,s)(t) (8)
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The activation function is used to define thresholds [ψ(ij,−), ψ(ij,+)] to ensure
that data points do not update if the estimated data point lies within the man-
ifold and that data points update if the estimated data point lies outside of the
manifold. These threshold regions can be expressed as:

ψ(ij,−) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ψ(1,ij,−) if 0 ≤ xj < L
Ω

ψ(2,ij,−) if L
Ω ≤ xj < 2L

Ω
...

ψ(Ω,ij,−) if (Ω − 1) L
Ω ≤ xj < L

(9)

ψ(ij,+) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ψ(1,ij,+) if 0 ≤ xj < L
Ω

ψ(2,ij,+) if L
Ω ≤ xj < 2L

Ω
...

ψ(Ω,ij,+) if (Ω − 1) L
Ω ≤ xj < L

(10)

where Ω is the number of segments used for the piecewise threshold regions
and L is the length of the manifold. Due to the usage of the nonlinear line
attractor, we will no be using the activation and limits defined by the algorithm
because of nonlinear dimensionality reduction. Figure 1 shows how the weights
are interconnect through the inputs.

Fig. 1. Interconnection of weights. The blue line captures the nonlinear line modeling
and the red lines capture the variances of the data.
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Since this is modeling of a specific manifold, multiple manifolds may be
needed to encompass more of a class. Most will require a specific manifold per
class, so there will be at least one weight set per class.

Computational Strategy. We have devised an effective computational strat-
egy for training data. Given Eq. 6, previous models of the computational strategy
require computing powers for each interconnection, in which there are several
calculations that are repeated in the equations while traversing through each
interconnection. Instead of having redundant calculations, we can divide the
weight calculation into different steps.

Stage 1 is the calculation of powers for the inputs. In Eq. 6, we see that
every x(j,s) has an order associated with it. Calculation of these terms would be
redundant for all different combinations of inputs and outputs, since there are
multiple terms with the same order, hence the same value. Computing only the
powers in this stage would tremendously reduce the computation time of the
system.

Stage 2 is be the calculation of the weights, given the set of normal equations
and using the values obtained from stage 1. The solving of the normal equations
can be done using a linear solve algorithm. This stage will take a considerable
amount of time due to the volume of data, specifically the number of inputs,
since the weight matrix size is N ×N ×k where N refer to the size of the image.

Stage 3 is the calculation of the activation function, which will also require a
considerable amount of computation time. Since the computation of the orders
for all of the input data are already known, the activation function can be for-
mulated using that data.

Stage 4 is the calculation of the nonlinear dimensionality reduction. This step
requires all of the weights and is dependent on the number of inputs and also
the order of the weight system.

2.1 Gaussian Nonlinear Line Attractor (GNLA) Network

The Gaussian Nonlinear Line Attractor Network is a modified NLA network
that incorporates proximity weighting which improves run times and recognition
rates. When implementing a Gaussian neighborhood approach, we can change
the coefficient in the front and add the distance equation. The equation can then
be modified as:

x(i,s) =
N∑

j=1

αijΛijx(j,s) for 1 ≤ i ≤ N, (11)

where

αij = exp

(
−

(
(qi − qj)2

2σ2
q

+
(ri − rj)2

2σ2
r

))
, (12)

For these equations, q and r define the spatial coordinates of the input x.
Instead of using the Gaussian function, we can use the Gaussian kernel, for
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Fig. 2. An example of a 13× 13 Gaussian kernel.

example a 13 × 13 Gaussian kernel as shown in Fig. 2. This will effectively reduce
the computation time. We can then change the equation as

x(i,s) =
∑
j∈B

aijΛijx(j,s), for 1 ≤ i ≤ N, (13)

where n is the size of the kernel and where

B = {j|aij > 0} for 1 ≤ i ≤ N, (14)

and

aij = exp

(
−

(
(x̂i − x̂j)2

2σ2
x̂

+
(ŷi − ŷj)2

2σ2
ŷ

))
(15)

We can also effectively reduce the computation time of the kernel by not
computing any portion that contains zeros. According to the Gaussian kernel
above (which is a 13× 13), roughly 28 % of the Gaussian kernel are zeros, as
shown in Fig. 3, thus a reduction of the computation time can be accomplished
by ignoring those computations.
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Fig. 3. An example of a 13× 13 Gaussian kernel with zeros removed.

Nonlinear Dimensionality Reduction. By using the weights in a nonlinear
dimensionality reduction technique, we can leverage the nonlinear weights to
give an optimum transform with less dimensions needed. Given that there are r
different line attractor networks, there will be y different outputs, as shown in
the following equation.

Y1 = W1,kXk + W1,k−1X
k−1 + · · · + W1,0X

0

Y2 = W2,kXk + W2,k−1X
k−1 + · · · + W2,0X

0

...

Yr = Wr,kXk + Wr,k−1X
k−1 + · · · + Wr,0X

0

(16)

Singular value decomposition (SVD) [13] was used previously to reduce the
weight set. We propose using the locally linear embedding (LLE) [14] algorithm
which interconnected weight sets for different datapoints to reduce the weights
of the NLA network.
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Each mth term of the networks’ memory is evaluated using the LLE algo-
rithm. We first obtain a sparse matrix M using the following equation.

M(m,d) = (I − W(m,d))′ ∗ (I − W(m,d)) for 0 ≤ m ≤ k; 1 ≤ d ≤ r (17)

We then take the smallest z eigenvectors from M and use them as the projec-
tion into the lower-dimensional subspace. The projection of the N-dimensional
data to a z-dimensional subspace using a z × N sub-matrix obtained from the
smallest z eigenvectors of the LLE yields a z-dimensional output Y

′
m where

z << N . The lower dimensional data can be used in a euclidean distance metric
to evaluate the effectiveness of the algorithm.

The weight matrices do not contain the coefficients of the Gaussian weighting,
thus we can incorporate the weighting inside the weight matrix. Given Eq. 17, we
can embed the normalized coefficients to multiply the weights using the following
equation.

A =

⎛
⎜⎝

α11 . . . α1N

...
. . .

...
αN1 . . . αNN

⎞
⎟⎠ (18)

The resultant multiplication of the weight set is given by the equation below.

W̄(m) =

⎛
⎜⎝

w̄(m,11) . . . w̄(m,1N)

...
. . .

...
w̄(m,N1) . . . w̄(m,NN)

⎞
⎟⎠ for 0 ≤ m ≤ k (19)

For calculating the nonlinear dimensionality, each order must be calculated
separately. Thus when computing the output, the orders still are computed in
the same functionality as the original NLA architecture. Instead of losing some
possible recognition ability due to the summation of orders, we can concatenate
the orders to formulate a bigger vector, which will be tested later in this chapter.

2.2 Complexity

In Stage 1, we can find that it will be the same complexity as the previous
algorithm since we are just computing the powers.

In Stage 2, the original complexity is N ×N ×k2 due to the linear solve algo-
rithm, but modified complexity is N ×n×k2, where # neighbors is significantly
smaller than the size of the network. For example, given that we have a network
of 60× 80, which is 4800, and an order of 4 for the polynomial, the complexity of
the algorithm becomes 4800×4800×42 = 368640000 computations. If we create
kernel of size 13×13, we would have a complexity of 4800×169×42 = 12979200
computations, which is 3.52 % the computation time of the original. If we reduce
the kernel by taking out all zeros in the function, we would have a complexity of
4800 × 121 × 42 = 9292800 computation, which is only 2.52 % the computation
time of the original and 71.6 % the computation time of the kernel.

In Stage 3, the complexity should be reduced just as stage 2. In Stage 4, the
complexity should be the same as the previous algorithm. Table 1 shows the run
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Table 1. Training times for each stage of the algorithms.

Runtime Original Current Kernel Kernel (No zeros)

Stage 1 N/A 15.2 min 15.2 min 15.2 min

Stage 2 1280 min 95.3 min 3.35 min 2.4 min

Stage 3 87.5 min 87.5 min 3.08 min 2.21 min

Stage 4 10.8 min 10.8 min 10.8 min 10.8 min

Total runtime 1378.3 min 208.8 min 32.43 min 30.61 min

times on a small subset of the EO Synthetic Vehicle dataset. It is found that the
kernel algorithm without using zeros provides faster training times than all of
the other algorithms.

2.3 Results

Datasets. The first dataset used to test the GNLA network is the EO Synthetic
Vehicle Database, as shown in Fig. 4. This database contains several vehicles
under different lighting conditions and viewing angles. The second dataset used
is the Sheffield database, which contains face imagery under different viewing
angles. For all datasets, a 13× 13 kernel is used for training and testing the
dataset.

Results 1. Table 4 shows the results on the EO Synthetic Vehicle database.
A full 360 view of each vehicle and one lighting condition is used to train and
test the validity of the technique. By concatenating all of the feautures found
during the nonlinear dimensionality reduction, we can see better recognition
results. Among all of the types of NLA architectures, it is found that the GNLA
architecture with concatenation works the best (Table 2).

Results 2. Table 3 shows the results of the GNLA network and other classifica-
tion algorithms on the Sheffield database. This database is split into two equal
sized datasets, one for training and one for testing. It is found that the GNLA
architecture with concatenation gives the best results amongst all of the other
algorithms. Runtimes for the NLA and GNLA algorithms are 8.2 h and 0.8 h
respectively.

Discussion. When training and testing with attractor networks, data that is
orthogonal provides better recognition due to the separation of the data with the
given input space. In-class variance in many of the dataset are very large while
between-class variance is very small, thus providing the network less ability to
separate the data in a classification task. The best case that the network should
be able to handle is a completely orthogonal dataset for all classes.
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Fig. 4. EO Synthetic Vehicle database. The top image shows the different camera and
lighting positions of the database and the images below show the different vehicles.

When using the GNLA architecture, orthogonality of the dataset increases
due to the reduction of the number of inputs. When having data with many
redundancies in the data will reduce the effectiveness of the data. Due to the
weighting of the GNLA, less of the neurons are used in the recreation of the out-
put, thus increasing orthogonality. ALso with the GNLA network, local informa-
tion is used, thus increasing orthogonality due to regions of the data having only
foreground or background data, thus reducing the influence of the background
data.
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Table 2. Recognition results on the EO Synthetic Vehicle database.

# prin. comp. NLA reg. NLA concat. GNLA reg. GNLA concat.

1 47.50 60.56 35.83 43.89

2 59.72 66.94 82.78 76.94

3 86.67 79.72 63.06 85.28

4 61.39 85.00 76.94 88.61

5 63.89 86.11 81.67 88.89

6 69.17 88.06 85.00 91.11

7 66.94 87.50 86.39 91.39

8 75.28 88.89 87.22 92.22

9 72.22 86.39 91.39 95.00

10 78.61 87.22 91.94 94.72

All 99.19 85.28 99.44 99.17

Table 3. Recognition results on the Sheffield database.

Algorithm % Recognition

PCA 86.87

KPCA 87.64

LDA 90.87

DPCA 92.90

DCV 91.51

B2DPCA 93.38

GNLA 93.33

GNLA (concat) 94.07

With the GNLA algorithm, proximity of the neurons provides valuable
insight as to improve the network. Since the influence of the convergence should
mostly come from the foreground pixels, we should be able to leverage that
data in the architecture, which will improve the recognition capabilities of the
network.

3 Weighted Nonlinear Line Attractor (WNLA) Network

Using foreground information tends to reduce the error of the network due to
the information being more valuable in discerning classes. When training the
network with the weights, we are able to find the error that is created during
training, which will be able to gives us insight as to which neurons to weight
for the network. Neurons used in the reconstruction of the output that give less
error should be weighted higher than other neurons.
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The proposed weighting scheme finds neuron relationships based on the error
of the reconstruction. With relationships that have least error, we can weight
those relationships higher to improve the recognition capabilities. Therefore, we
can expect that weighting relationships that contain less error, we will be able
to reduce the overall error of the trained network. This is an improvement to
the proposed GNLA architecture since the proximity weighting is spatial rather
than based from least error. One benefit with this weighted NLA architecture is
that creating more layers with the nonlinear dimensionality is possible since any
spatial orientation is destroyed in the next layer.

3.1 Architecture

When calculating the weights for the weighted NLA, the polynomial weights
must be calculated first for all of the training data to find the error of the data.
This weight computation will be different than the GNLA architecture, which is
able to reduce the training time. The weight NLA needs to compute all of the
interconnections to find the best weight reduction for the network.

Once the weights are obtained, then the NLA architecture can be tested
for all of the trained data points to find the error accrued in each relationship.
Depending on the number of data points, the calculation may take longer for
training. Once all of the nodal relationship error is found, a map can be created
based on the order of the error that is produced by the network. The computation
of the weights for each of the nodal relationships can be shown in Eq. 20. With
the smallest error, the weighting will be the highest while the largest error will
give a smaller weighting.

ai = exp

(
−

(
i2

2σ2

))
(20)

where i is the sorted index for all of the nodes. With the error obtained by the
network, smallest error can be combined to remove collections of neurons for the
entire network or for each neuron. For this paper, we will be using individual
error to find the best neuron relationships for each neuron. Once the map for
the weighting is obtained, we can perform nonlinear dimensionality reduction to
reduce the number of dimensions for the classification task. This network should
be able to reduce the global error due to the reduction of highly erroneous nodal
relationships.

3.2 Results

The dataset used to test the weighted NLA architecture is the EO Synthetic
Vehicle database. Table 4 shows the results of the algorithms on the database
using a full 360 view of the vehicle and one lighting condition. It is found that
the weighted NLA architecture provides the best recognition rates out of all of
the proposed architectures.
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Table 4. Recognition results on the EO Synthetic Vehicle database.

# of weights NLA (R) NLA (C) GNLA (R) GNLA (C) WNLA (R) WNLA (C)

1 47.50 60.56 35.83 43.89 38.89 42.22

2 59.72 66.94 82.78 76.94 49.44 66.94

3 86.67 79.72 63.06 85.28 61.11 76.67

4 61.39 85.00 76.94 88.61 70.83 86.11

5 63.89 86.11 81.67 88.89 86.94 95.00

6 69.17 88.06 85.00 91.11 86.39 96.94

7 66.94 87.50 86.39 91.39 90.00 98.33

8 75.28 88.89 87.22 92.22 94.44 98.89

9 72.22 86.39 91.39 95.00 94.72 98.33

10 78.61 87.22 91.94 94.72 93.89 98.61

All 99.19 85.28 99.44 99.17 99.72 99.72

The proposed weighted NLA architecture improves the classification rates
and convergence of the network. Due to the averaging effect of the nodal rela-
tionships of the NLA architecture, the network seems to improve with any type
of modification of the interconnectivity of the network. With the GNLA network,
spatial connectivity takes precedence, but it is found insufficient due to the find-
ings in the error-based weighting strategy. The weighted NLA architecture aims
to reduce any error causing relationships in the network, thus providing the best
recognition of the proposed architectures.

4 Conclusions

The proposed weighted nonlinear line attractor network has performed the best
compared to the Gaussian NLA and the original NLA architectures. Due to the
reduction of orthogonality based on the reduction of error, rather than reduction
of nodes due to spatial proximity, the network is able to perform much better
than the other proposed architectures and is projected to perform better in many
other databases as well. We aim to leverage the knowledge found in the network
to create a new network architecture, which encompasses the polynomial nature
of the network, the modularity introduced by the GNLA and weighted NLA,
and a multilayer architecture, that is not usually found in this network. These
findings show promise in the development in a stronger, more robust neural
network, capable of difficult recognition tasks and complex learning.
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Abstract. With the objective to detect neuron assemblies in recorded
parallel spike trains, we develop methods to find frequent parallel
episodes in parallel point processes (or event sequences) that allow for
imprecise synchrony of the events constituting occurrences (temporal
imprecision) as well as incomplete occurrences (selective participation).
The temporal imprecision problem is tackled by frequent pattern mining
using two different notions of synchrony: a binary notion that captures
only the number of instances of a pattern and a graded notion that cap-
tures both the number of instances as well as the precision of synchrony
of its events. To cope with selective participation, which is the main
focus of this paper, a reduction sequence of items (or event types) is
formed based on found frequent patterns and guided by pattern overlap,
for which we explore different concept. We demonstrate the performance
of our methods on a large number of (artificially generated) data sets
with injected parallel episodes, which mimic actually recorded parallel
spike trains.

1 Introduction

We present methodology to identify meaningful frequent synchronous patterns
in event sequences (see e.g. [16]), using principles of frequent item set mining
(FIM) (see e.g. [2]). As is well known, the objective of FIM, which was originally
developed for market basket analysis, is to find all item sets that are frequent in a
transaction database. FIM uses the support (that is, the number of occurrences in
the transactions) to define an item set as frequent, namely if its support reaches
or exceeds a (user-specified) minimum support threshold. In standard FIM the
support of an item set is a simple count of transactions. In our case, however, the
event sequence data is continuous in nature, since it resides in the time domain,
and thus no (natural) transactions exist. This continuous form causes several
problems, especially w.r.t. the definition of a proper support measure.

c© Springer International Publishing AG 2017
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Furthermore, frequent pattern mining in continuous time faces two main
problems: temporal imprecision and selective participation. The former consists
in the fact that events can be affected by temporal jitter, due to which the events
underlying an occurrence of a pattern may not be perfectly aligned. In frequent
pattern mining we tackle temporal imprecision by defining that items (or events)
co-occur if they occur in a (user-specified) limited time span from each other. If a
binary notion of synchrony is used (that is, a group of events is either considered
to be synchronous or not synchronous—two values), the support of an item set
can be defined as a maximum independent set (MIS) of its occurrences, which
can be computed efficiently with a greedy algorithm (see [4,19]).

Unfortunately, a greedy algorithm no longer guarantees an optimal solution
to the MIS problem if a graded notion of synchrony is used, while a backtracking
approach (as it would be used for a general MIS problem, which is NP-complete)
takes exponential time in the worst case. As a consequence, an adaptation is
necessary, which takes the form of an approximation procedure to compute the
support, but maintaining the crucial property of support being anti-monotone.
In this way, [7] defined a graded synchrony approach where the support compu-
tation takes the precision of synchrony into account. That is, a pattern that has
fewer occurrences, but in each of these the items occur very closely together in
time, is rated better than an item set, which has more instances, but in each of
these the synchrony of the events is rather loose [7].

The second problem, that is, selective participation, is related to lack of occur-
rence of some items, which produces incomplete pattern instances. As a conse-
quence, only subsets of the actual pattern are present in the instances underlying
a pattern. This can be caused by imperfections of the measuring technology or
by properties of the underlying process. [3] presented an approach to solve this
problem in the binary synchrony setting we mentioned above.

Our motivating application area is parallel spike train analysis in neurobi-
ology, where spike trains are sequences of points in time, one per neuron, that
represent the times at which an electrical impulse (action potential or spike) is
emitted. It is generally believed that biological neurons represent and transmit
information by firing sequences of spikes in various temporal patterns [5]. How-
ever, in the research area of neural coding, many competing hypotheses have
been proposed how groups of neurons represent and process information, and
ongoing research tries to develop methods to confirm or reject (some of) these
hypotheses by analyzing recordings of neuronal firing patterns. Here we focus
on the temporal coincidence coding hypothesis, which assumes that neurons are
arranged in neuronal assemblies, that is, groups of neurons that tend to exhibit
synchronous spiking (such cell assemblies were proposed in [10]), and claims that
the tighter the spikes are in time, the stronger the encoded stimulus is. In this
setting, the precision of synchrony (which we tackle with our graded notion) is
relevant, because (more tightly) synchronous spike input to receiving neurons is
known to be more effective in generating output spikes [1,13].

In this paper we investigate how selective participation can be handled
with both binary and graded synchrony in an algorithm called CoCoNAD (for
Continuous-time Closed Neuron Assembly Detection), which was developed to
detect significant synchronous patterns in event sequences.
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As a first step to identify neuron assemblies, we look for frequent neuronal
patterns (i.e. groups of neurons that exhibit frequent synchronous spiking). Here
both temporal imprecision and selective participation are expected to be present
and thus require proper treatment. Temporal imprecision is handled by binary
and graded notions of synchrony that give rise to anti-monotone support mea-
sures, by which certain item (or event type) sets are characterized as frequent.
Once frequent patterns are detected, statistical filtering is applied to remove
those frequent patterns that are likely only chance events and thus not relevant.
In a second step, selective participation is handled by analyzing the filtered pat-
terns w.r.t. their overlap, forming a reduction sequence of items (or event types)
from which a (candidate for) a neural assembly can finally be read.

The remainder of this paper is structured as follows: Sect. 2 covers basic
terminology and notation and introduces the binary and graded notions of syn-
chrony as well as the support computation for both methods. In Sect. 3 methods
to mine and filter frequent synchronous patterns with pattern spectrum filtering
are described. In Sect. 4 we present our methodologies to identify frequent par-
allel episodes with selective participation. Section 5 reports experimental results
on (artificially generated) data sets with injected parallel episodes. Finally, in
Sect. 6 we draw conclusions from our discussion.

2 Event Sequences

We adopt notation and terminology from [7,16,19]. The data are sequences of
events S = {〈i1, t1〉, . . . , 〈im, tm〉}, m ∈ N, where ik in the event 〈ik, tk〉 is the
event type or item (taken from an item base B) and tk ∈ R is the time of occur-
rence of ik, k ∈ {1, . . . ,m}. Note that the fact that S is a set implies that there
cannot be two events with the same item occurring at the same time: events with
the same item must differ in their occurrence time and events occurring at the
same time must have different types/items. Such data may as well be represented
as parallel point processes P = {〈i1, {t

(1)
1 , . . . , t

(1)
m1}〉, . . . , 〈in, {t

(n)
1 , . . . , t

(n)
mn}〉} by

grouping events with the same item i ∈ B, n = |B|, and listing the times of their
occurrences for each of them. Finally, note that in our motivating application
(i.e. spike train analysis), the items are the neurons and the corresponding point
processes list the times at which spikes were recorded for these neurons.

A synchronous pattern (in S) is defined as a set of items I ⊆ B that occur
several times (approximately) synchronously in S. Formally, an occurrence (or
instance) of such a synchronous pattern (or a set of synchronous events for I) in
an event sequence S with respect to a user-specified time span w ∈ R

+ is defined
as a subsequence R ⊆ S, which contains exactly one event per item i ∈ I and
which can be covered by a time window at most w wide. Let φ be an operator
that yields the pattern underlying an instance, φ(R) = {i | 〈i, t〉 ∈ R}. Hence
the set of all instances of a pattern I ⊆ B, I �= ∅, in an event sequence S is

ES,w(I) =
{R ⊆ S | φ(R) = I ∧ |R| = |I| ∧ σw(R) > 0

}
,
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where σw is the synchrony operator which measures the (degree of) synchrony
of the events in R. The following two sections describe two different synchrony
operators: a binary and a graded one.

2.1 Binary Synchrony and Support Computation

For binary synchrony, the operator σ
(b)
w captures the (approximate) synchrony

of the events in R in a two-valued fashion:

σ(b)
w (R) =

{
1 if max{t | 〈i, t〉 ∈ R} − min{t | 〈i, t〉 ∈ R} ≤ w,
0 otherwise.

That is, σ
(b)
w (R) = 1 iff all events in the subsequence R can be covered by a

(time) window at most w wide. Note that this allows for temporal imprecision.
Based on this notion of (imprecise) synchrony, we define the support of an

item set I ⊆ B as follows (see also [14,21] for a related, but still significantly
different characterization that is based on covering windows rather than sets of
underlying events as we employ them here):

s
(b)
S,w(I) = max

{|U| | U ⊆ ES,w(I) ∧ ∀R1,R2 ∈ U ;R1 �= R2 : R1 ∩ R2 = ∅}
.

That is, we define the support (or total synchrony) of a pattern I ⊆ B as the
size of a maximum independent set (MIS) of its instances (where by independent
set we mean a collection of instances that do not share any events, that is,
the instances do not overlap). Such an approach has the advantage that the
resulting support measure is guaranteed to be anti-monotone, as can be shown
generally for maximum independent subset (or, in a graph interpretation, node
set) approaches—see, for example, [8] or [24].

A parallel episode I ⊆ B is called frequent (in S) if its support s
(b)
S,w(I) meets

or exceeds a (user-specified) minimum support smin. The task of mining frequent
parallel episodes consists in finding, for a given event sequence S and window
width w, all parallel episodes I ⊆ B that are frequent in S. However, in order
to reduce the output, it is common to report only the closed frequent parallel
episodes, where a parallel episode I is called closed if no parallel episode that is
a proper superset J ⊃ I has the same support. We denote the set of all frequent
parallel episodes that can be found in an event sequence S w.r.t. (user-specified)
window width w and minimum support smin by CS(w, smin) ⊆ 2B .

At least at first sight, a support measure based on (the size of) a maximum
independent set (MIS) seems to suffer from the severe drawback that in the
general case finding a maximum independent set is NP-complete [11] and even
hard to approximate [9]. Intuitively speaking, this means that (unless P = NP)
there is no (known) algorithm that does fundamentally better than an algorithm
that tries all possibilities (here: enumerates all independent sets to find the max-
imum size). As a consequence, the algorithm has exponential time complexity
(in the size of the set E(b)

S,w(I), from which the maximum independent set is to
be selected) and thus would take a prohibitively long time to find a solution.
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Fortunately, though, the problem instances we are facing here are strongly
constrained by the underlying one-dimensional time domain, which makes it
possible to devise an efficient greedy algorithm that solves it exactly. For a given
item set I, for which the support is to be determined, this algorithm starts with
an empty selection of instances and proceeds by traversing the sequence S (or the
parallel point processes P) chronologically. It always selects as the next instance
(i.e., the next element of ES,w(I)(b)) that does not overlap any of the already
selected instances and contains the earliest possible events for each of the items
in I. For this, it does not even have to construct the set E(b)

S,w(I) explicitly, but
can work directly on the sequence S (or the parallel point processes P). As a
consequence, it has a time complexity of mI · log(|I|), where mI =

∑
i∈I mi is

the sum of the numbers of events of each item i (that is, the total number of
events with items in I), since to compute the MIS size, mI events have to be
passed through a priority queue of size |I|. Details of this algorithm (including
pseudo-code) can be found in [4], while a proof that it is guaranteed to find (the
size of) a maximum independent set of E(b)

S,w(I) can be found in [19].
Based on this support computation, frequent parallel episodes are then found

with a standard divide-and-conquer scheme (or depth-first search scheme) as it is
also known from standard frequent item set mining, particularly from the Eclat
algorithm [2,25]. The algorithm proceeds as follows: for a chosen item i, the
problem of finding all frequent parallel episodes is split into two subproblems:
(1) find all frequent parallel episodes containing i and (2) find all frequent parallel
episodes not containing i. Each subproblem is then further divided based on
another item j: find all frequent patterns containing (1.1) both i and j, (1.2) i but
not j, (2.1) j but not i, (2.2) neither i nor j etc.

The search is pruned with the so-called apriori property, which is a direct
consequence of the fact that support is anti-monotone. A support measure s is
called anti-monotone if it satisfies ∀I, J ⊆ B : I ⊆ J ⇒ s(I) ≥ s(J), that is,
if an item set is extended, its support cannot increase, and the apriori property
reads ∀I, J ⊆ B : (J ⊇ I ∧ s(I) < smin) ⇒ s(J) < smin, that is, no superset of
an infrequent parallel episode can be frequent. Therefore the recursive division
process can be terminated as soon as the support of the set of all included split
items falls below the (user-specified) minimum support smin, since no frequent
patterns can be found in deeper levels. Details of this approach in the context of
FIM can be found, for example, in [2]. Details of this scheme for finding (closed)
frequent parallel episodes (including pseudo-code) can be found in [4].

2.2 Graded Synchrony and Support Computation

A graded synchrony operator should coincide with binary synchrony for limiting
cases as follows: if all events in R coincide (i.e., have exactly the same occurrence
time, perfect synchrony), the degree of synchrony should be 1, while it should
be 0 if the events are spread out farther than the window width w (no synchrony).
However, if the (time) distance between the earliest and the latest event in R is
between 0 and w, we want a degree of synchrony between 0 and 1.
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σw(R)

d(R)

d(R) = max〈i,t〉∈R t
− min 〈i,t〉∈R t

1

0
0 w

perfect
synchrony

no

synchrony

Fig. 1. Degree of synchrony as a function of the distance between the latest and the
earliest event in an occurrence (or instance) of an item set.

Such a synchrony operator was described in [17] based on the notion of an
influence map, which is placed at each event and describes the vicinity around
an event in which synchrony with other events is defined. Such an influence map
for an event occurring at time t is defined as the function

ft(x) =
{

1
w if x ∈ [t − w

2 , t + w
2 ],

0 otherwise.

Note that an influence map is not a distribution function in the sense of proba-
bility theory, even though it shares its formal properties. In particular, it is not
meant to describe uncertainty about the occurrence time of an event.

Based on influence maps, events are synchronous iff their influence maps
overlap. The area of the overlap measures the degree of synchrony (Fig. 1):

σw(R) =
∫ ∞

0

min
〈i,t〉∈R

ft(x,w) dx.

Alternatively, we may use the equivalent definition

σ(g)
w (R) = max

{
0, 1 − 1

w

(
max

〈i,t〉∈R
t − min

〈i,t〉∈R
t
)}

.

This synchrony operator underlies the definition of a graded support opera-
tor s

(g)
S,w(I) that is used to mine synchronous patterns. Of course, such a support

operator should (also) capture the number of occurrences of a pattern in a given
event sequence S. In addition, in order to be efficient, frequent pattern mining
requires support to be anti-monotone so that it satisfies the apriori property in
order to be able to prune the search effectively (cf. binary synchrony).

In principle, we can employ an approach that is analogous to the case of
binary synchrony and define the support of an item set as the total degree of
synchrony (i.e., the sum over the degrees of synchrony of the instances) of an
independent set of instances that yields the maximum total synchrony. That is,
we can define a maximum weight independent set support (where the weight of
an event set is its degree of synchrony) instead of the maximum size independent
set support for binary synchrony. Such an approach was considered in [17].

However, such an approach has severe drawbacks. Although the resulting
support is intuitive and guaranteed to be anti-monotone, it cannot be computed



392 S. Ezennaya-Gomez et al.

efficiently with the same greedy algorithm that is used for binary synchrony
support, since in the graded case this algorithm is no longer guaranteed to find
the optimal (maximum weight) solution [7]. Replacing it with a general back-
tracking algorithm that is guaranteed to find the optimal solution is not really
a feasible alternative, because it has exponential time complexity in the worst
case. Although the problem instances are still constrained by the underlying
time domain, we have not been able up to now to find an efficient exact solution
algorithm (for instance, a different greedy selection scheme). As a consequence,
in order to avoid this problem, we opt for an approximation scheme.

As such an approximation, defined in [7], the integral over the maximum
(union) of the minimum (intersection) of influence regions is chosen: the mini-
mum represents the synchrony operator, the maximum takes care of a possible
overlap between instances of synchronous event groups, and the integral finally
aggregates over different instances. Formally:

s
(g)
S,w(I) =

∫ ∞

−∞
max

R∈ES,w(I)

(
min

〈i,t〉∈R
ft(x)

)
dx.

Note that, exploiting the properties of maxima and minima, this definition can
conveniently be rewritten as

s
(g)
S,w(I) =

∫ ∞

−∞
min
i∈I

(
max

〈j,t〉∈S;j=i
ft(x)

)
dx.

The advantages of this support measure are mainly two: in the first place this
support measure is anti-monotone due to the minimum over i ∈ I. Secondly, it
allows to compute the support by a simple intersection of interval lists, since
all occurring functions only take two values, namely 0 and 1

w , and therefore it
suffices to record where they are greater than 0. Thus, the list of intervals for each
item i ∈ B in which max〈j,t〉∈S;j=i ft(x) > 0 is computed. These intervals can
then be intersected to account for the minimum. Summing the interval lengths
and dividing by w (to account for the height of the influence maps) we obtain
the area under the functions (cf. the example shown in Fig. 2).

Note that this computation scheme is very similar to the Eclat algorithm [25]
(which intersects transaction identifier lists to compute support values), trans-
ferred to a continuous domain (and thus to effectively infinitely many trans-
actions, one for each point in time). As a consequence, it can be applied with
only few adaptations (concerning mainly the support computation) to obtain an
efficient algorithm for mining frequent synchronous patterns (see e.g. [2]).

Given this support definition, the search for frequent item sets follows the
same divide-and-conquer scheme described in Sect. 2.2. In order to reduce the
output it is restricted to closed frequent patterns (as in Sect. 2.2). However, it
should be noted that the restriction to closed patterns is less effective with graded
synchrony than with binary synchrony, because adding an item can now reduce
the support not only by losing instances, but also by worsening the precision of
synchrony. Hence, most patterns are closed under graded synchrony [7].
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Fig. 2. Support computation for three items a, b, c. Each event has its influence map
(represented as a rectangle). If two influence maps overlap, the resulting influence map
is the maximum (union) of these influence maps. The intersection of influence maps
is the minimum which defines the synchrony operator. In the diagram, item b has two
events the influence regions of which overlap. The support results from the integral
over the intersections.

3 Pattern Spectrum Filtering

The large number of patterns in the output of synchronous pattern mining
method is a serious problem and thus further reduction is necessary. This is
done by identifying statistically significant patterns and discarding all others.
Previous work showed that statistical tests on individual patterns are not suit-
able [18,22]. The main problems are the lack of proper test statistics as well
as multiple testing, that is, the huge number of patterns makes it very difficult
to control the family-wise error rate, even with control methods like Bonferroni
correction, the Benjamini-Hochberg procedure or the false discovery rate etc [6].

To overcome this problem, we rely here on the general approach suggested in
[18] and refined in [22] for a time binning approach to event sequence analysis,
namely Pattern Spectrum Filtering (PSF). This method is based on the following
insight: even if it is highly unlikely that a specific group of z items co-occurs
s times, it may still be likely that some group of z items co-occurs s times,
even if items occur independently. The reason is simply that there are so many
possible groups of z items (unless the item base B as well as the group size z are
tiny) that even if each group has only a tiny probability of co-occurring s times,
it may be almost certain that one of them co-occurs s times.
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Fig. 3. Pattern spectrum generated from 104 surrogate data sets: (a) pattern spectrum
for binary synchrony, (b) pattern spectrum for graded synchrony.

From this insight it was derived in [18] that patterns should rather be judged
based on their signature 〈z, s〉, where z = |I| is the size of a pattern I and s its
support. A pattern is considered not significant if a counterpart (that has the
same or larger pattern size z and same or higher support s) can be explained as
a chance event under the null hypothesis of independent events.

In order to determine the likelihood of observing different pattern signa-
tures 〈z, s〉 under the null hypothesis of independent items, a data randomiza-
tion or surrogate data approach is employed. The general idea is to represent
the null hypothesis implicitly by (surrogate) data sets that are generated from
the original data in such a way that their occurrence probability is (approxi-
mately) equal to their occurrence probability under the null hypothesis. Such
an approach has the advantage that it needs no explicit data model for the null
hypothesis, which in many cases (including the one we are dealing with here)
may be difficult to specify. Instead, the original data is modified in random ways
to obtain data that are at least analogous to those that could be sampled under
conditions in which the null hypothesis holds. An overview of several surrogate
data methods in the context of neural spike train analysis can be found in [15].

In summary, the objective of PSF is to pool patterns with the same signa-
tures 〈z, s〉 and to collect the occurrences of signatures over surrogate data sets.
The result is called a pattern spectrum (examples are shown in Fig. 3). Given
such a pattern spectrum, all patterns found in the original data are discarded,
for which a counterpart (same or larger signature) is recorded in the pattern
spectrum (that is, occurred in a surrogate data set). The reason is that patterns
occurring in surrogate data are certainly chance events.

The only adaptation needed in comparison to [18,22] is that, due to the
graded synchrony, support values are no longer integers, but can be arbitrary
(non-negative) real numbers. As a consequence, the pattern spectrum changes
from a bar chart with discrete values on both axes to a histogram, where support
bins with a (user-specified) width are formed for the support axis. This does
not change the general idea, though: patterns (found in the original data) are
discarded if a counterpart (same or larger signature) is recorded in the pattern
spectrum, as this indicates that it could merely be a chance event.
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4 Handling Selective Participation

Our approach to identify parallel episodes in the presence of selective partici-
pation is based on the following insight: although incomplete occurrences of a
pattern may make it impossible that the full pattern is reported by the mining
procedure, it is highly likely that several overlapping subsets will be reported. An
example of such a situation is depicted in Fig. 4, which shows parallel spike
trains of six neurons labeled a to f with complete and incomplete instances of
parallel episodes comprising all six neurons (in blue; while background spikes are
shown in gray). Although the full set of neurons fires together only once (left-
most instance) and thus would not be detected (since its support is too low), the
other five incomplete occurrences give rise to five subsets of size 4, each of which
occurs twice, and many subsets of size 3, occurring 3 or more times. Since these
patterns overlap heavily, it should be possible to reconstruct the full pattern by
analyzing pattern overlap and combining patterns.

Our method views the set of patterns that were found in a given data set as a
hypergraph1 on the set of items (which are the vertices of this hypergraph): each
pattern forms a hyperedge. Patterns that are affected by selective participation
thus give rise to densely connected sub-hypergraphs. Hence, we should be able
to identify such patterns by finding densely connected sub-hypergraphs [3].

Our detection method draws on the approach proposed in [23] for detecting
dense sub-hypergraphs. Although this approach was designed to find dense sub-
graphs in standard graphs, its basic idea is easily transferred and adapted: we
form a reduction sequence of items by removing, in each step, the item that is
least connected to the other items (that are still considered). Then we identify
from this sequence the set of items where the least connected item (i.e., the one
that was removed next) was most strongly connected (compared to other steps
of the sequence). This item set is the result of the procedure [3].

Although this method limits the basic procedure to the identification of a
single pattern, it is clear that multiple patterns can easily be found with the same
amendment as suggested in [23]: find a pattern and then remove the underlying
items (vertices) from the data. Repeat the procedure on the remaining items to
find a second pattern. Remove the items of this second pattern and so on. A
drawback of this approach is that it can find only disjoint patterns and thus fails

f
e
d
c
b
a

Fig. 4. Parallel episodes (indicating neuron assembly activity) with selective partici-
pation (blue) as well as background spikes (gray). (Color figure online)

1 While in a standard graph any edge connects exactly two vertices, in a hypergraph
a single hyperedge can connect arbitrarily many vertices.
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to identify overlapping patterns. However, given the general difficulty to handle
selective participation, we believe that this is an acceptable shortcoming.

Formally, a reduction sequence of item sets is constructed, starting from the
item base B (that is, the set of all considered items), as

Jn = B, where n = |B|,
Jk = Jk+1 − {argmini∈Jk+1

ξS,w,smin(i, Jk+1)}, for k = n − 1, n − 2, . . . , 0,

where ξS,w,smin(i, Jk) denotes the strength of connection that item i ∈ Jk has to
the other items in the set Jk, as it is induced by the (closed) frequent patterns
found when mining the sequence S with window width w and minimum sup-
port smin (concrete functions ξS,w,smin(i, Jk) are studied below). Then, we assign
a quality measure to each element of this reduction sequence:

∀k; 0 ≤ k ≤ n : ξS,w,smin(Jk) = min
i∈Jk

ξS,w,smin(i, Jk).

Finally, we select as the result of our procedure the pattern (item set)

I = argmaxJk; 0≤k≤nξS,w,smin(Jk),

that is, the pattern with the highest quality (sub-hypergraph density).
To obtain concrete instances of the functions ξS,w,smin(i, Jk), two different

approaches are explored: a pattern-based approach that works with only pat-
terns and their support (ignoring the specific instances of the patterns) and an
instance-based approach that tries to remove instances to focus the evaluation
on instances that likely resulted from the actual assembly activity (note that
there can be chance instances, especially for small patterns). These methods can
both be applied for binary and graded synchrony are described below.

4.1 Pattern-Based Approach

Let C∗
S(w, smin) ⊆ 2B be the set of closed frequent patterns that are identified

by the CoCoNAD algorithm with a binary or a graded notion of synchrony (if
executed with window width w and minimum support smin on S), for which
no counterpart (no signature with the same size and greater or equal support
constitutes a counterpart) was observed in any of the surrogate data sets (that
is, the closed frequent patterns remaining after pattern spectrum filtering). Let
C∗

S,J(w, smin) = {I ∈ C∗
S(w, smin) | I ⊆ J} be the subset of these patterns that

are subsets of an item set J . Then we define the hypergraph connection strength
of item i ∈ J to the other items in J as

ξ
(pat)
S,w,smin

(i, J) =
∑

I∈C∗
S,J (w,smin)

(|I| − r) · sS,w(I),

where r ∈ {0, 1} is a parameter that determines whether the full pattern size
(hyperedge size) should be considered (r = 0), or whether the item i itself should
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be disregarded (r = 1). The support of the item set I enters the definition
because a larger support clearly means a stronger connection.

Intuitively, ξ
(pat)
S,w,smin

(i, J) sums the (total) degrees of synchrony underlying
each of the patterns that connect item i to the other items in J . Note that in
this definition we assume (as is common practice and also intuitively plausible)
that ξ

(pat)
S,w,smin

(i, J) = 0 if C∗
S,J(w, smin) = ∅.

4.2 Instance-Based Approach

The pattern-based approach has the advantage that merely the filtered set of
closed frequent patterns (together with their support values) is needed. How-
ever, it has the disadvantage that subset patterns which, by chance, occur again
outside of the instances of the full pattern may deteriorate the detection quality.
An example of such an occurrence can be seen in Fig. 4: the neurons a, b and e
fire together between the second and third instance of the full set. However, this
synchronous firing event is not an incomplete instance of the full set of neurons,
but rather a chance coincidence resulting from the background spikes. This can
lead to a subset being preferred to the full pattern, even though the sum in the
above definition gives higher weight to events that support multiple instances
(as these are counted multiple times). Hence removing such instances may be a
good idea in order to improve the detection quality.

To achieve this, rely on the idea that we only want to consider instances that
are not “isolated”, but “overlap” some other instance (preferably of a different
pattern). The reason is that isolated instances likely stem from chance coinci-
dences, while instances that “overlap” other instances likely stem from the same
(complete or incomplete) instance of the full pattern we try to identify.

Let C∗
S(w, smin) and CS,J(w, smin) be defined as above. Let US,w(I) ⊆ ES,w(I)

be the set of all instances of I that was identified by the CoCoNAD algorithm
in order to compute the support sS,w(I) (binary or graded, as desired). Further-
more, let VS,w,smin(J) =

⋃
I∈C∗

S,J (w,smin)
US,w(I). That is, VS,w,smin(J) is the set

of all instances underlying all patterns found in S that are subsets of J .
To implement our idea of keeping overlapping instances, we define

V∗
S,w,smin

(i, J) =
{R ∈ VS,w,smin(J) | ∃T ∈ VS,w,smin(J) : φ(T ) �= φ(R) ∧ o(T ,R) = 1},

where φ is the pattern operator defined in Sect. 2 and oi(R, T ) is an operator
that tests whether the instances R and T overlap. In words: V∗

S,w,smin
(i, J) is

the set of instances of patterns that contain the item i ∈ J and are subsets of
the set J , which overlap at least one other instance of a different pattern.

For the operator o we tried two different variants for binary synchrony:

oi(R, T ) =
{

1 if R ∩ T �= ∅,
0 otherwise, and

os(R, T ) = σw(R ∪ T ),
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where σw is the synchrony operator from Sect. 2.1. That is, oi checks whether
the instances have a non-empty intersection, while os only checks whether the
events underlying the instances are synchronous.

Based on these definitions, we finally define

ξ
(inst)
S,w,smin

(i, J) =
∣∣{〈j, t〉 ∈ ⋃

R∈V∗
S,w,smin

(i,J) R | j �= i ∨ r = 0
}∣∣,

where the parameter r ∈ {0, 1} determines whether events of the item i should
be considered (r = 0) or disregarded (r = 1). That is, the parameter r has the
same function as the parameter r in the pattern-based approach. Intuitively,
ξ
(inst)
S,w,smin

(i, J) is the total number of events (possibly ignoring events of the
item i) underlying instances that connect it to other items in J .

Note that the operator os is not applicable for graded synchrony since there
is no concept of the degree of synchrony of the events forming a single instance
(which is a result of the approximation scheme we employ—there would be such a
concept if we employed a maximum weight independent set support). To account
for this, in our approach for graded synchrony, we use only the operator oi and
recompute the support from the reduced set of instances (using the formulas in
Sect. 2.2), which is easy to do as the instances are known. That is, handling selec-
tive participation for graded synchrony consists in collecting only instances that
overlap with other instances of different patterns, re-computing the support from
these instances and finally applying the pattern-based approach. In contrast, for
binary synchrony the instance-based approach does not require executing the
pattern based approach as a second step.

Note that the instance-based approach has the advantage that chance coin-
cidences are much less likely to deteriorate the detection quality. However, its
disadvantage is that it is more costly to compute, because not just the patterns,
but the individual instances of all relevant patterns have to be processed.

5 Experiments

We implemented our frequent synchronous pattern mining method in Python,
using an efficient C-based Python extension module that implements the pattern
mining and surrogate generation.2 We generated event sequence data as inde-
pendent Poisson processes with parameters chosen in reference to our applica-
tion domain: 100 items (number of neurons that can be simultaneously recorded
with current technology), 20 Hz event rates (typical average firing rate observed

2 The selective participation handling is implemented in Python [20], while the
CoCoNAD algorithm is implemented in C [12]. These implementations can be found
at http://www.borgelt.net/coconad.html and http://www.borgelt.net/pycoco.html.
A Java graphical user interface for the CoCoNAD algorithm is available at http://
www.borgelt.net/cocogui.html. The scripts with which we executed our experiments
as well as the complete result diagrams (all parameter combinations) will be made
available at http://www.borgelt.net/hypernad.html.

http://www.borgelt.net/coconad.html
http://www.borgelt.net/pycoco.html
http://www.borgelt.net/cocogui.html
http://www.borgelt.net/cocogui.html
http://www.borgelt.net/hypernad.html
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Fig. 5. Example of generated data sets that imitate parallel neural spike trains. Each
row of blue dots represents the spike train of each neuron. In this example the injected
patterns (here: full participation) are drawn in red. (Color figure online)

in spike train recordings), 3 s total time (typical recording times for spike trains
range from a few seconds up to about an hour).

Into such independent data sets we injected a single synchronous pat-
tern each, with sizes z ranging from 2 to 12 items and numbers c of occur-
rences (instances) ranging from 2 to 21. To simulate imprecise synchrony, the
events of each pattern instance were jittered independently by drawing an offset
from a uniform distribution on [−1.5 ms,+1.5 ms] (for binary synchrony) and
[−1 ms,+1 ms] (for graded synchrony), which corresponds to typical bin lengths
for time-binning of parallel neural spike trains (which are 1 to 7 ms). An exam-
ple of such a data set is depicted in Fig. 5. To simulate selective participation,
we deleted each item of a parallel episode from a number ν ∈ {1, 2, 3, 4, 5} of
their instances (chosen randomly). This created data sets with instances similar
to those shown in Fig. 4 (which corresponds to z = 6, c = 6 and ν = 1, but
has much fewer background spikes): a few instances may be complete, but most
lack a varying number of items. For each signature 〈z, c〉 of a parallel episode
and each value of ν we created 1000 such data sets. Then we tried to detect the
injected synchronous patterns with the methods described in Sects. 3 and 4.

For mining closed frequent patterns with binary synchrony we used a window
width of w = 3 ms (matching the jitter of the temporal imprecision), a minimum
support smin = 2 and a minimum pattern size zmin = 2. For graded synchrony, we
chose smin = 1.0 and zmin = 2 and, based on results presented in [7], the window
width was set to 3

2j = 3 ms where j is the temporal jitter width (j = 2 ms, see
above). Found patterns were filtered with pattern spectra derived from 100 and
1000 surrogate data sets with independent spike trains. Finally, the reduction
sequence methods described in Sect. 4 are applied to the resulting patterns.
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Fig. 6. Experimental results with ν = 1 (each item missing from one instance) for
binary synchrony, 100 surrogate data sets and r = 1.

Fig. 7. Experimental results with ν = 2 (each item missing from two instance) for
binary synchrony, 100 surrogate data sets and r = 1.

Some of the results we obtained are shown in Figs. 6, 7, 8, 9, 10, 11 and
12. In each row of the figures, the first diagram shows the number of (strict)
false negatives, that is, the fraction of runs (of 1000) in which either no pattern
or some other pattern than exactly the injected pattern was found. In order
to elucidate what happens in those runs in which the injected pattern was not
(exactly) detected, the diagrams in columns 2 and 3 show the fraction of runs in
which a superset or a subset, respectively, of the injected pattern was returned.
Column 4 shows the fraction of runs with overlap patterns (the reported pattern
contains some, but not all of the items of the injected pattern and at least one



Handling Selective Participation in Neuron Assembly Detection 401

Fig. 8. Experimental results with ν = 4 (each item missing from four instances) for
binary synchrony, 100 surrogate data sets and r = 1.

Fig. 9. Experimental results with ν = 1, patterns filtered by 100, and 1000 surrogate
data sets for binary synchrony.

other item), column 5 the fraction of runs with patterns that are unrelated to the
injected parallel episode. At the top of each diagram the setup is specified by its
parameters: the number ν of instances followed by the number of surrogate data
sets, the reduction sequence approach applied, and the value of the parameter r.

If we compare the different rows of each of the Figs. 6, 7 and 8, we see that
the instance-based approach performs slightly better than the pattern-based
approach, and the more so, the more events are missing. The two instance-based
approaches (distinguished by the overlap operator: oi or os) are essentially tied,
possibly with a very slight advantage for the overlap operator oi.

If we compare the diagrams across the three Figs. 6, 7 and 8, we may also
conjecture that each additional instance from which items are missing, requires
about two additional instances to compensate the reduction in detection qual-
ity (note the different scales on the instance axis!). This is also plausible, since
each item missing from one additional instance effectively removes an instance
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Fig. 10. Experimental results with instance- and and pattern-based approaches for
graded synchrony for r values 0 and 1.

Fig. 11. Experimental results for graded synchrony, patterns filtered by 100, and 1000
surrogate data sets.

(as it removes as many events as an instance contains) and since the removals
are distributed over multiple instances, additional compensation is needed. Fur-
thermore, we see that we achieve reliable detection even if items are missing
from up to about one quarter of the instances of a pattern.

W.r.t. graded synchrony, note that it has less problems with unrelated pat-
terns: we observe that filtering with 100 and 1000 surrogate data sets performs
better w.r.t. unrelated patterns compared to the binary approach. That is, in
these cases every injected pattern is detected (at least partially as a subset or
part of a superset or overlap pattern) if only something is detected at all.
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Fig. 12. Comparison between the instance- and pattern-based approaches for graded
synchrony and the instance-based approach for binary synchrony.

Figure 10 shows a comparison between the instance- and pattern-based
approaches using graded synchrony. The firsts two rows of diagrams show results
for r = 0 and the second two rows correspond to r = 1. The pattern-based
approach is slightly better than the instance-based approach in terms of false
negatives (exact pattern detection). Concretely, for r = 1 the pattern-based app-
roach has better ratios in supersets and overlaps, for which only a small price is
paid terms in of a slightly worse ratio for subsets. We prefer the setup in which
more subsets are detected, because subsets contain only items actually in the
assembly, while superset and overlap patterns also contain unrelated items.

The first and second row of Fig. 12 correspond to the instance and the
pattern-based approach for graded synchrony, while the third and fourth corre-
spond to the pattern and instance-based approach for binary synchrony. Compar-
ing the diagrams for unrelated patterns, the graded method detects all injected
patterns (if something is detected at all, first and second row), while the binary
method also produces unrelated patterns. It is demonstrated that the instance-
based approach yields slightly better results than the pattern approach for the
binary synchrony. However, this approach does not consider the precision of
synchrony. Surprisingly, using only the pattern-based approach with a graded
notion of synchrony yields a better ratio for overlap and superset patterns.
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6 Conclusions

In this paper we presented a method to detect frequent synchronous patterns
in event sequences for mining patterns in the presence of imprecise synchrony
(temporal imprecision) of events constituting occurrences and incomplete occur-
rences (selective participation). We employed both a binary and a graded notion
of synchrony, with the latter having the advantage that it takes not only the
number of instances, but also the precision of synchrony into account. Selective
participation, which was the main focus of this paper, is handled by exploiting
that in its presence many overlapping patterns should be found. These are evalu-
ated by interpreting them as a hypergraph on the set of items and constructing a
reduction sequence to find a densely connected hypergraph. We presented differ-
ent ways of defining the connecting strength of sub-hypergraphs, using either
only the found patterns and their support or also analyzing the underlying
instances and their overlap. We found that the computationally more expen-
sive instance-based approach pays of in the case of a binary synchrony, while
for graded synchrony the computationally cheaper pattern-based approach is
preferable. We demonstrated in extensive experiments that selective participa-
tion can successfully be treated in this manner, obtaining fairly good detection
rates, especially in the face of the scarcity of information that is available under
such circumstances.

Acknowledgements. The work presented in this paper was partially supported by
the Spanish Ministry for Economy and Competitiveness (MINECO Grant TIN2012-
31372) and by the Principality of Asturias, through the 2013-2017 Science Technol-
ogy and Innovation Plan (Programa Asturias, CT1405206), and the European Union,
through FEDER funds.

References

1. Abeles, M.: Role of the cortical neuron: integrator or coincidence detector? Isr.
J. Med. Sci. 18(1), 83–92 (1982). Israel Medical Association, Ramat Gan, Israel
(1982)

2. Borgelt, C.: Frequent item set mining. In: Wiley Interdisciplinary Reviews
(WIREs): Data Mining and Knowledge Discovery, pp. 437–456. Wiley, Chichester
(2012)

3. Borgelt, C., Braune, C., Loewe, K., Kruse, R.: Mining frequent parallel episodes
with selective participation. In: Proceedings of 16th World Congress of the Inter-
national Fuzzy Systems Association (IFSA) and 9th Conference of the European
Society for Fuzzy Logic and Technology (EUSFLAT), IFSA-EUSFLAT2015, Gijon,
Spain. Atlantis Press, Amsterdam, Netherlands (2015)

4. Borgelt, C., Picado-Muiño, D.: Finding frequent synchronous events in parallel
point processes. In: Proceedings of 12th International Symposium on Intelligent
Data Analysis, IDA, London, UK, pp. 116–126. Springer, Heidelberg (2013)

5. Dayan, P., Abbott, L.: Theoretical neuroscience: computational and mathematical
modeling of neural systems. J. Cogn. Neurosci. 15(1), 154–155 (2003). MIT Press,
Cambridge



Handling Selective Participation in Neuron Assembly Detection 405

6. Dudoit, S., van der Laan, M.J.: Multiple Testing Procedures with Application to
Genomics. Springer, New York (2008)
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Abstract. In real learning paradigms like pavlovian conditioning, sev-
eral modes of learning are associated, including generalization from cues
and integration of specific cases in their context. Associative memories
have been shown to be interesting neuronal models to learn quickly spe-
cific cases but they are hardly used in realistic applications because
of their limited storage capacities resulting in interference when too
many examples are considered. Inspired by biological considerations, we
propose a modular model of associative memory including mechanisms
to manipulate properly multimodal inputs and to detect and manage
interference. This paper reports experiments that demonstrate the good
behavior of the model in a wide series of simulations and discusses its
impact both in machine learning and in biological modeling.

Keywords: Associative memory · Interference · Inhibition · Biological
systems

1 Introduction

In the domain of machine learning, models of neural networks are classified along
their architecture and their mode of learning [1], specifically corresponding to
supervised and unsupervised modes. In contrast, in the domain of cognitive sci-
ence, a natural learning paradigm considered in a realistic behavioral and eco-
logical environment often associates several neuronal architectures and learning
modes. This is for example the case with pavlovian conditioning that has been
shown to require learning a variety of invariants and to modify the neuronal cir-
cuitry in several brain regions including the amygdala, hippocampus and cortex
[2]. Consequently, in addition to developing efficient models of neural networks
designed for their specific characteristics, there is also a need for a more systemic
view of learning, considered at the global cognitive level.

Such an approach was already proposed twenty years ago in [3] arguing that
the brain exploits complementary learning systems, with a slow and procedural
learning in the cortex, able to extract structures and regularities in the data and

c© Springer International Publishing AG 2017
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DOI 10.1007/978-3-319-48506-5 21
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to generalize, compared with a quick learning in the hippocampus able to retain
the specifics of one’s life experiences. This paper, with a very strong impact
in both cognitive and machine learning communities, proposes that these sys-
tems might be respectively implemented with classical neural models of pattern
matching like the multilayer perceptron for the slow learning and models of
associative memory for the quick learning.

As an illustration, these models can be contrasted with the property of gen-
eralization. Generalization is often reported as a desirable property of artificial
neural networks. This phenomenon occurs if, when a network is presented with an
example it has never seen before, it is able to interpolate a satisfactory response
from the combination of close previously learned examples. Such a response can
be judged satisfactory not only because from a limited learning phase the net-
work behaves well in a wider domain but also because in some sense learning
goes beyond specific cases and is able to extract some general structures or reg-
ularities in the example space. In some cases, however, this property might be
considered a flaw. This is the case for example when there is no useful topogra-
phy in the example space or when the goal is to learn some arbitrary association.
Consider for example learning to associate a phone number with a name: there
is nothing to learn from the euclidean distance between two such numbers and
you can in no way discover an association if it was not instructed to you before.
This contrasts the case of learning a general rule from a set of examples, as it
is for example studied with layered architectures like the multilayer perceptron,
versus learning by heart specific cases like in associative memories.

Neural models of associative memories have been proposed with recurrent
networks like the Hopfield model [4] and the Willshaw model [5]. Based on clas-
sical connectionist characteristics (like units with non linear activation functions
and hebbian learning), the recurrent architecture of these networks indicates
that learning is mainly focused on the inner characteristics of an example to
be memorized and not on the elaboration of abstract representations in inter-
mediate layers. Nevertheless, some problems can appear if too close examples
are learned. In such a case, the network might elaborate an answer from the
combination of several learned examples; what would be called generalization in
other circumstances is called here interference.

As a consequence, models of associative memories are generally used as con-
tent addressable memories, where few prototypes are stored as stable states
of the network and noisy or incomplete patterns are presented as inputs and
reconstructed to the closest stored example. Beyond this use as an autoassocia-
tive memory (where initial input and final result have the same dimension), the
adaptation to heteroassociative memory is straightforward: just virtually split
the recurrent network in two sets of neurons A and B. The recurrent connec-
tivity includes connections within A and within B (seen as two autoassociative
memories) and between A and B (heteroassociative memory between the two
sets of different dimension A and B). As configurations of A + B are learned as
prototypes, proposing an incomplete pattern A (B neurons being set to 0) will
result in the reconstruction of A + B, yielding the answer B. The main acknowl-
edged weakness of these models is about their limited capacity of storage and
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the associated risk of catastrophic interference when this capacity is exceeded
or when too close prototypes are stored [6,7]. The best solution to this problem
is to require a sparse coding, which intrinsically also limits the maximum num-
ber of stored prototypes. An associated strategy is to orthogonalize the inputs
and project their encoding in higher dimensions, which results in larger weight
matrices to manipulate [8]. In both cases, this might prevent associative mem-
ories from being applied to large scale realistic problems and can accordingly
explain why they didn’t have the same expansion in the machine learning com-
munity than layered networks. It is consequently highly desirable to develop
scalable models of associative memory.

In previous work, we have proposed a modular network model of associa-
tive memory [9] grounded on biological data [10,11]. These data report hetero-
geneities in the hippocampal structure that might support the coexistence of
autoassociative and heteroassociative networks in this region. Specifically, the
hippocampus is a neuronal structure known to be involved in episodic memory
[12], corresponding to the storage of specific episodes including their context and
their emotional or motivational significance. For example, the hippocampus is
involved in contextual learning of pavlovian conditioning [13], linking neutral
stimuli and their context to biologically significant events (reward and pun-
ishment). Though primarily oriented toward biological modeling, we have also
explained in [9] the interest of such a segregation from an information processing
point of view (cf. the concluding section for a summary). In addition, we have
also postulated an additional mechanism for the association of autoassociative
memories, that might result in a more robust system, particularly more resis-
tant to interference. The goal of this paper is to evaluate more precisely the
performances of this mechanism from an information processing point of view.

In the next section, we will present this model together with its formalism
based on the associative memory initially proposed by Willshaw [5]. Then we will
report the experiments that were conducted to evaluate its resistance to inter-
ference and the associated results. We will conclude by explaining the interest of
such a mechanism both in neuroscience and in information processing domains.

2 Multiple Associative-Memory Model

The model is made up of two autoassociative networks that are heteroassocia-
tively linked through a layer of intermediate cells (Fig. 1). The goal is to associate
two multi-element patterns in such a way that when at least some elements of
the first pattern are presented both patterns can be recalled as a whole. In
the hippocampus, these two patterns are considered to represent two impor-
tant dimensions of episodic memories: (1) The perceptual dimension arises from
the integration of different kinds of signals coming from the perception of the
outer world: exteroception. (2) The emotional dimension reflects the perception
of internal cues of different valences related to pain and pleasure: interoception.
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Fig. 1. The architecture of the hippocampal model. Black lines denote the basic cir-
cuit of the model while blue lines denote changes in circuitry mediated by one group
of associated cells (blue) following the detection of valence-overload interference (red
arrow). Autoassociative and heteroassociative connectivities between hippocampal cells
are denoted respectively by bidirectional dashed lines and simple dashed lines without
arrows. Inhibitory connections between valence cells are denoted by lines ended with
circles. Stable non-plastic connections, both excitatory and inhibitory, are denoted by
solid lines. (Color figure online)

Then, the two autoassociative networks considered in the model receive and
store independently two types of input patterns, a(e) and a(i). The layer of inter-
mediate cells is organized into a small number of ordered groups of valence cells
that receive valence-related information from the same interoceptive pathways
as the interoceptive autoassociative network. The cells in the first group can
be directly activated by interoceptive inputs to the model and can therefore be
thought of as the primary valence cells. Interoceptive inputs on the cells in the
other groups, which are termed associated cells, are conditional, that is, they
can not evoke postsynaptic activity within associated cells unless a concomitant
signal, mk, related to the activity pattern of a precedent group is applied.

The valence cells belonging to the same group of intermediate cells are
not interconnected. By contrast, inhibitory connections, Iij , exist between cells
belonging to different groups. The inhibitory connections are not plastic. They
are prewired such that an inhibitory connection from cell i to cell j exists
(Iij = 1) if the two cells belong respectively to different groups, k and l, and l
precedes k (l < k). Thus, each group of associated cells, once activated, silences
excitable cells in its preceding groups including the primary group of valence
cells. This means that at most valence cells in one group can be active at a time.

The formation of extero-interoceptive associations is done at the level of het-
eroassociative links, w(e−v)

ij , between the exteroceptive autoassociative network
and the groups of intermediate valence cells. These latter provide direct exci-
tatory input to the interoceptive autoassociative network through non-plastic
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connections, w(v−i)
ij . These connections are prewired only between valence cells

that are sensitive to the same kind of valence.
The classical binary version of the Willshaw network [5] is chosen as the basis

for the implementation of both auto- and heteroassociative memory functions in
the model. The neurons are simple McCulloch-Pitts binary threshold units and
learning begins with all the synaptic weights set to zero. Synaptic plasticity is
achieved according to a clipped version of Hebbian learning: a single coincidence
of presynaptic and postsynaptic activity changes the synaptic weight wij from
0 to 1, while further co-activations do not induce further changes. The recall
process is done by presenting a cue pattern x̃ and counting the dendritic sum
for each cell j (sj =

∑n
i=1 wij x̃i) in one-time step. The output cells that have a

dendritic sum equal to or higher than the number of active inputs are activated.
The quality of a recalled pattern can be assessed according to its Hamming
distance (HD) from the originally stored pattern (i.e. the number of elements
that differ between the two patterns. For example, if x = (0 1 1 1 0) and y= (1
1 0 1 0) then HD(x, y) = 2).

Similarly to cholinergic models of the hippocampus [14,15], our model oper-
ates in transition between two modes, storage and recall, depending on a hyper-
parameter ACh. This mechanism is inspired from biological data describing mode
switching under the dynamic regulation of the levels of acetylcholine (ACh)
released from septal cholinergic projections to the hippocampus. During recall,
a retrieval cue, a(e), is applied to the exteroceptive autoassociative network. The
pattern of activity obtained at the output, â(e), drives retrieval in the heteroas-
sociative network. An intermediate valence cell, l, can fire only if the dendritic
sum of its excitatory inputs exceeds the threshold value and if it does not receive
inhibitory inputs from other valence cells that have already fired. The activity
of the intermediate valence cells, ã(i), triggers recall in the interoceptive autoas-
sociative network yielding the valence prediction by the model, â(i).

Just after delivery of the interoceptive information, two novelty-detection
processes take place to compare the retrieved patterns to the actual patterns
from extero- and interoception. The novelty condition occurs when the Hamming
distance between two patterns exceeds pre-specified thresholds (HD(e) > e or
HD(i) > v). Novelty induces ACh dynamics that favor learning of new inputs,
otherwise the model settles in recall mode.

During learning, excitatory intrinsic synaptic transmission along the recur-
rent connections is removed and activity in the model is purely driven by afferent
extero- and interoceptive inputs, a(e) and a(i). In the model, two kinds of inter-
ference can occur due to a saturation, or overload of learning. The first kind
of interference occurs within the autoassociative memories when too many or
too close inputs are stored. It is called pattern overload and can be much miti-
gated using sparse patterns and low memory load conditions. The second kind of
interference is called valence overload and is more likely to occur when elements
making up the stored patterns become simultaneously associated to different
valences. Consider for example learning AB+, AC− and BD−, where A, B, C
and D are exteroceptive patterns and + and − are interoceptive valences. Since
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A and B are simultaneously associated to + and − valences, the recall of AB
would probably generate an interference (both responses produced). The model
deals with valence-overload interference by monitoring activity of intermediate
valence cells, y(v). If any activity is observed among intermediate valence cells
(
∑

i y
(v)
i > 0) in response to exteroceptive inputs a matching process takes place

to determine whether this activity matches interoceptive valence-specific inputs.
A mismatch (HD(v) > v) signals a potential interference to a successive group
of associated valence cells that become able to respond to valence-related inputs
and rapidly silence valence cells that were active in preceding groups.

3 Experiments

The validity of the proposed model is examined through a series of numerical
experiments (cf. [9] for the description of other numerical experiments with this
model). The simulated model is configured with 150 cells in the exteroceptive
autoassociative network and 3 cells in the interoceptive autoassociative network.
The intermediate valence cells are organized into 5 groups of 3 cells each.

Inputs are provided to the model as two independent patterns of activity.
The exteroceptive inputs are generated as random 150-element binary patterns
with 6 elements being active (set to 1). The interoceptive inputs are modeled by
3 binary cells to differentiate positive, negative and neutral valence states. One
of these cells switches to its active state according to whether a pleasant (100),
unpleasant (010), or neutral (001) stimulus is present.

The performance is evaluated by comparing the output patterns recalled by
the model against the original representation of the input patterns that were pre-
sented to the model as new information to be stored. Specifically, two kinds of
recall errors are considered when evaluating simulation results. Pattern comple-
tion errors which reflect the Hamming distance between the learned and retrieved
activation for exteroceptive patterns, and valence prediction errors which reflect
the Hamming distance between the correct and predicted valence. In both cases,
errors are scored when Hamming distance is greater than zero.

Two types of simulations are set out to test the model for its ability to rapidly
link exteroceptive patterns and their emotional valences while avoiding valence
overload interference. The first set of simulations examines the effect of the num-
ber of stored patterns on the accuracy of valence prediction. The model is tested
under full-cue and partial-cue recall conditions. The number of stored patterns
is kept low enough that under full-cue conditions almost no pattern overload
occurs at the level of autoassociative memories. This is important to ensure that
any prediction errors might be detected arise directly from valence overload at
the level of heteroassociative links between exteroceptive and interoceptive pat-
terns. The second set of simulations focuses on how to quantify the ability of
associated valence units to orthogonalize conflicting associations arising from a
change in previously learned valence values.

In all of the simulations, the performance of the proposed model, also called
the full model, is compared with that of a reduced model with the groups of
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associated cells removed. A third model with a single autoassociative memory
in which both exteroceptive and interoceptive information are merged into a
single pattern is also considered to further delineate benefits of the proposed
architecture under partial-cue conditions. All results are averaged over 10 simu-
lation runs and are displayed throughout the figures as mean ± standard error
of the mean. The novelty-detection thresholds, e and v, are set to zero for all
the simulations.

4 Results

4.1 Storage Capacity

The first set of simulations is run by varying the number of training patterns
and observing how valence prediction is affected with and without the groups of
associated cells included in the model (Fig. 2). Training patterns are presented
randomly into blocks of N trials with N varying from 10 to 100 in steps of 10.
At the different values of N, the full and reduced models were able to recognize
exteroceptive patterns with pattern completion errors less than 0.3 %. However,
there was a noticeable difference between the two models in terms of valence
prediction.

As illustrated in Fig. 2A, following the first presentation of training patterns,
both models perform perfectly up to N = 20, after which point valence prediction
errors begin to occur more frequently with increasing size of the blocks of training
trials. But as expected, adding the associated cells decreases valence prediction
errors at each value of N. For instance, at N = 100, the percentage of prediction
errors is about 32 % for the reduced model but falls to about 20 % for the full
model. This reduction results from the identification of about 7 % of the stored
associations as interfering associations (Fig. 2B). Interference effect is accord-
ingly reduced through the recruitment of one group of associated cells (Fig. 2C).
During the second presentation of training patterns, the full model detects all
the interfering associations that remain and orthogonalizes them using the same
group of associated cells (Fig. 2C). Therefore, the performance of valence predic-
tion differs significantly between the two models after the second presentation of
training patterns: the reduced model continues to commit the same prediction
errors while the proposed model performs with no errors at all.

4.2 Pattern Completion

In the above simulations, it is pertinent to emphasize that no differences were
observed between the autoassociative model and the heteroassociative model
with the groups of associated cells removed. This is of no surprise because in
both cases valence prediction is initiated by a complete set of exteroceptive
cues. Under partial-cue conditions, the proposed model as well as its reduced
version are expected to take advantage of the fact that pattern completion of
exteroceptive cues is performed prior to valence prediction. To test this premise,
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Fig. 2. Influence of the number of stored patterns on the accuracy of valence prediction.
(A) Percentage of prediction errors of the model without associated cells (W/O) and
with associated cells after one block (W (P1)) and two blocks (W (P2)) of training
trials. (B) Rates of interference detection during the first (P1) and second (P2) training
trials. (C) Number of groups of associated cells needed to resolve interference detected
during training trials P1 and P2.

the three models are trained in the same manner as in the previous simulations
except that recall is triggered by partial versions of the original trained patterns.
Specifically, the block size is set to 100 training patterns and the model is cued
with partial versions with either 1, 2 or 3 of the 6 active inputs turned off.
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Fig. 3. Performance of the proposed model after training on 100 input patterns. The
model is tested using partial cues in which 1, 2, or 3 out of 6 active elements in the
original inputs are turned off. (A) Pattern completion performance, defined as the per-
centage of retrieved patterns that differ at least by one element from the originally
stored patterns. (B) Pattern completion performance, defined in terms of Hamming
distance between the stored and retrieved patterns. (C) Valence prediction perfor-
mance of the simple auto- and heteroassociative models. (D and E) Valence prediction
performance of the proposed model with (w) and without (w/o) associated cells after
one and two blocks of training trials. (F) Rates of interference detection during the
first (P1) and second (P2) training trials. (G) Maximal number of groups of associated
cells needed to resolve interference detected during the training trials P1 and P2.
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As shown in Fig. 3A and B, all the models perform similarly and reason-
ably well in terms of pattern completion of exteroceptive cues. The accuracy
of valence prediction of the autoassociative model is much worse than that of
the heteroassociative models and monotonously drops as the number of deleted
elements increases (Fig. 3C). On the contrary, the heteroassociative models are
much less sensitive to the percentage of deleted elements. The accuracy of valence
prediction with the 1/6 partial-cue condition is the same as that obtained with
the full-cue condition (Fig. 3D and E). This is because exteroceptive patterns are
almost perfectly reconstructed as shown in Fig. 3B. The removal of two or three
of the six active cues causes a proportional decrease in the accuracy of pattern
completion of exteroceptive patterns. Consequently, the improvement in valence
prediction by the proposed model is less pronounced but still highly significant
as compared to the reduced model. For all the percentages of removal simulated,
the model makes use of one group of associated cells to tackle valence-overload
interference (Fig. 3G).

4.3 Discrimination

Here we investigate the functional significance of the groups of associated cells
using numerical simulations with reversal learning tasks. The task in the first
set of simulations involves two phases. In the first phase the model is presented
repeatedly with 50 training patterns [e.g. A+, B−, C (neutral), etc.] over 4 blocks
of trials and the percentage of prediction errors made at the beginning of each
trial is measured and displayed in Fig. 4A.

This is a simple discrimination learning problem similar to those tested in the
previous simulations. Thus as was observed before, valence-overload interference
occurs at the early stages of learning and exhibits the recruitment of one group
of associated cells to tackle it. When the groups of associated cells are removed
the reduced model shows impaired performance that persists over the repeated
trials. In the second phase, emotional valences of the training patterns are ran-
domly changed to other value with a probability of 50 % [e.g. A−, B (neutral), C
(neutral), etc.]. As shown in Fig. 4A the proposed model quickly learns to reverse
its behavior as all the emotionally changed patterns are detected and learned
on the first training trials after reversal. On the other hand, the reduced model
fails to acquire the new associations since the old ones have not been unlearned.

4.4 Reversal Learning

Further analysis of the model behavior is based on a cue-context reversal learning
task similar to that established by [16] to investigate reversal learning in patients
with mild amnesic cognitive impairment. To simulate this task, three groups of 4
exteroceptive patterns each are formed such that one of the 6 active elements is
used to encode the presence of a sensory cue and the others to encode contextual
cues. No overlap is allowed between cells encoding for different cues or contexts
(cf. Table 1).
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Fig. 4. Discrimination reversal learning. (A) Percentage of prediction errors of the
model with (w) and without (w/o) associated cells. (B) Rates of interference detection
over each block of trials. (C) Number of groups of associated cells needed to resolve
interference across the different blocks of trials.

In the first phase of acquisition, the model is repeatedly presented with the
training patterns in the first group and valence prediction is evaluated over four
blocks of training trials. Figure 5 shows that both full and reduced models make
correct valence prediction after a single exposure to the training patterns. Then,
the reversal phase is immediately followed by exposing the models to new train-
ing patterns from the second and third groups, in addition to the old ones. The
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Table 1. The experimental design of the task of [16]. Note. A–H refer to eight cue
shapes, 1–8, eight contexts, + and – indicate respectively positive and negative valences.

Training patterns Task

Group 1 Group 2 Group 3 Phase 1 Phase 2

(original) (cue reversal) (context reversal) (acquisition) (retention & reversal)

A1+ E1– A5– Group1 Group1

B2+ F2– B6– Group2

C3– G3+ C7+ Group3

D4– H4+ D8+

training patterns are also presented repeatedly four times in random order. The
results show that, in the first block of trials, valence prediction errors are made
for both new and old patterns. This reflects the fact that heteroassociative con-
nections are irrelevantly strengthened between the original patterns and valences
of new patterns. When interference is detected, one group of valence-associated
cells is recruited and prediction errors fall to zero rapidly on the third block
of trials after reversal. In contrast, the number of prediction errors the reduced
model makes is still the same as the blocks progress for the same reason stated
above.

5 Discussion

The primary goal of this paper was to propose a new framework to consider
the storage of multimodal information in associative memories while making
them efficient even in adverse conditions. Indeed, associative memories have
powerful properties for learning by heart specific patterns and recalling them
from partial information. They can learn quickly and recall patterns as they were
initially presented, without modification nor generalization. It has been shown
[3] that such properties are present and necessary in certain classes of cognitive
functions and consequently it is of interest to build computational models able to
emulate them. Nevertheless, associative memories are little exploited in classical
machine learning because they suffer from limited storage capacities, particularly
when patterns to be stored are close, resulting in interference and catastrophic
forgetting [1].

It has also been shown [1] that associative memories can be simply used in
autoassociation for pattern retrieval but also in heteroassociation between two
different classes of inputs. In the model presented here, we exploit this heteroas-
sociative view to propose a modular network. From an information processing
point of view, we explain in the present paper that a heteroassociation between
two data spaces of different size leads to more robust retrieval than a sim-
ple autoassociation with a flat vector concatenating both kinds of information
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Fig. 5. Cue-context reversal learning. (A) Percentage of prediction errors of the model
with (w) and without (w/o) associated cells. (B) Rates of interference detection over
each block of trials. (C) Number of groups of associated cells needed to resolve inter-
ference across the different blocks of trials.

because the evaluation of the Hamming distance between stored and actual pat-
terns would consider in this latter case that one error in any dimension yields the
same penalty, which is obviously not the case. This is confirmed in the present
paper, considering comparison of performances between similar autoassociative
and heteroassociative models.
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A modular view of associative memories is also exploited to implement
another powerful property of our model, for managing interference, using another
set of units called associated cells. When an association is learned between a high
dimensional data space and a smaller space representing labels (valences in the
present case), one central problem is about the association of close patterns with
different labels or of different combinations of patterns with different labels. This
classical problem has been termed configural learning [17]. With a fully auto-
matic algorithm to insert associated cells between the heteroassociative modules,
we have proposed in the present model a mechanism able to detect interference
at the heteroassociative level and to trigger new learning accordingly. The exper-
iments reported here, particularly comparing performances of reduced and full
heteroassociative models, show that our model is very efficient at performing
such a learning. In addition, this learning process is very quick, which preserves
another important specificity of episodic learning.

In this paper, we also propose to relate the very good properties of modular
heteroassociative memories to two different frameworks. In the framework of
brain modeling, the model has been primarily built as a biologically informed
model of the hippocampus [9]. In addition to proposing some evidences for the
implementation of a modular network in this cerebral structure, we also propose
that heteroassociation could take place between exteroception and interoception,
corresponding to different kinds of hippocampal inputs. In further studies, this
could be extended to other classes of hippocampal inputs, particularly related
to the frontal cortex.

The focus was set here on interoception and exteroception because this study
was related to other studies in the team [13] related to pavlovian conditioning.
This learning paradigm is very interesting because it is an excellent basis for
a systemic view of learning in the brain, with adaptive processing involving
(at least) the amygdala, the hippocampus and the cortex [2]. Extending the
duality between procedural learning in the cortex and specific cases learning in
the hippocampus [3], we explain in [13] that the amygdala is designed to learn
pavlovian associations from cues extracted by both structures with their own
way of learning and also report, in accordance to other authors [18], a synergy
between the three modes of learning, where an event in one learning module (an
error of prediction, the occurrence or the storage of a specific case) can trigger
or modify learning in another learning module. Considering the importance of
such a distributed learning principle, better understanding its details deserves
additional work.

Bio-inspiration was also a strong motivation for this work because, in addi-
tion to classical evaluation of performances, one of the experiments we made was
also designed to reproduce behavioral and cognitive data in the medical domain
for amnesic impairments [16]. Related medical data strongly suggest the central
role of the hippocampus in this memory process, giving additional interest to the
complementary learning system hypothesis [19]. The cognitive framework initi-
ated in [3] postulates how procedural learning in the cortex, slowly learning and
able of generalization, might be instructed by specific cases learned quickly in



A Modular Network Architecture Resolving Memory Interference 421

the hippocampus while avoiding interference. Adding emotional aspects with the
dissociation between interoceptive and exteroceptive cues, extends this frame-
work of mnemonic synergy in the brain, proposed for medical purposes.

In the framework of machine learning, we have also presented this work as
a new model of associative memory and its main results have been described
here mainly in the framework of information processing. This is also the reason
why we use simple binary units in the hippocampal model, even if more complex
functioning rules might be expected in the framework of a biologically inspired
model: Even if more complex units might be considered in future works, par-
ticularly to fit with more precise biological data, the main goal of the present
work was to settle the main computational principles of our modular model.
Beyond the case for pavlovian conditioning with interoceptive and exteroceptive
cues, we believe that it is not rare in the information processing domain to cope
with such associations between data of different dimensions, as it is the case for
example with labeled data (high-dimensional data associated with a symbolic
label). In this case, we claim that combining autoassociation and heteroassoci-
ation as proposed here results in more robustness in the retrieval phase. More
generally and beyond associative memories, heteroassociation using intermediate
cells to reduce ambiguities is a general class of approaches in machine learning
and the criteria proposed here to avoid interference and keep associations simple
could be extended to other models of machine learning in further works. This
could illustrate other cases where a primary biological inspiration yields efficient
learning principles.
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Abstract. The method to construct an emotional robot based on regulation of
emotional responses with an emotion state embedded reinforcement learning
system is proposed in this paper. Besides environmental states, the emotional
robot has emotional states which are generated by stimulus received from sensor
images. If the learning coefficient of emotions in Amygdala model is changed,
generated emotional states in the robot are also different, even if the robot sees
same sensor images. As a result, using the method, we can make kinds of robots
with any emotions, having same structures. Through computer simulations,
applying the proposed method to construct emotional robots, it is said the robots
solve the path-finding problem including a variety of distinctive solutions. We
find that each robot is able to have each individual solution depending on kinds
of its emotions.

Keywords: Emotional state embedded reinforcement learning � Amygdala �
Emotional model � Emotional robot

1 Introduction

Reinforcement learning (RL) for the behavior selection of robots has been proposed
since 1950’s. As a machine learning method, it uses trial-and-error search, and rewards
are given by the environment as the results of exploration/exploitation behaviors of the
robot to improve its policy of the action selection [1]. The architecture of RL system is
shown in Fig. 1. However, when human makes a decision, he finally does it using the
various functions in the brain, e.g., emotion. Even the environmental state is the same;
many different selections of the behavior may be done depending on his emotional state
then.

A computational emotion model has been proposed by J. Moren and C. Balkenius
[2]. Their emotion model consists of four parts of the brain: “thalamus, sensory cortex,
orbitofrontal cortex and amygdala” as shown in Fig. 2. Figure 2 represents the flow
from receptors of sensory stimuli to assessing the value of it. So far, the emotion model
has been applied to various fields, especially, the control field of something. For
example, H. Rouhani et al. applied it to speed and position control of the switched
reluctance motor [3] and micro heat exchanger control [4]. N. Goerke applied it to the
robot control [5], E. Daglari et al. applied it to behavioral task processing for cognitive
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robot [6]. On the other hand, Obayashi et al. combined emotion model with rein-
forcement Q learning to realize the robot with individuality [7]. F. Yang et al. also
proposed the robot’s behaviour decision-making system based on artificial emotion
using cerebellar model arithmetic computer (CMAC) network [8]. H. Xue et al. pro-
posed emotion expression method of robot with personality to enable robots have
different personalities [9]. Kuremoto et al. applied it to a dynamic associative memory
system [10]. All of these applications have good results.

In this paper, we propose a method to construct an emotional robot based on
regulation of emotional responses with an emotion state embedded reinforcement
learning system.

Fig. 1. Reinforcement learning system (Sutton et al. 1998) [1].

Fig. 2. A computational emotional model proposed by J. Moren et al. [2].
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The rest of this paper is organized as follows. In Sect. 2, a brief explanation about
standard reinforcement Q learning is described, and in Sect. 3, a computational emo-
tion model we used is provided. Our proposed method to construct an emotional robot
based on regulation of emotional responses with an emotion state embedded rein-
forcement learning system is given in Sect. 4. Two computer simulations using two
grid world environments are carried out to evaluate the proposed method in Sect. 5.
This paper is concluded in Sect. 6.

2 Reinforcement Learning

In this section, a simple explanation of the commonly used reinforcement learning
system, in particular, Q-learning, one of representative RL methods and used in this
paper, is done. The framework of standard reinforcement learning system is shown in
Fig. 1.

The algorithm of Q learning is as follows [1]:

where, meaning of phrases and detail of this algorithm is referred to [1].

3 Computational Emotion Model

The computational emotional model is proposed by J. Moren and C. Balkenius [2]
consists of 4 parts of the brain, “thalamus, sensory cortex, orbitofrontal cortex and
amygdala” as shown in Fig. 2, it represents the flow from receptors of sensory stimuli
to assessing the value of it. The dynamics of the computational emotional model are
described as follows;

Ai ¼ ViSi ð2Þ
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Oi ¼ WiSi ð3Þ

E ¼
X
i

Ai �
X
i

Oi ð4Þ

DVi ¼ aamy Simax 0; Rew�
X
j

Aj

 ! !
ð5Þ

DWi ¼ bamy Si E � Rewð Þ; ð6Þ

here, Si denotes input stimuli from the sensory cortex and thalamus to the ith neuron in
the amygdala, i = 1, 2, …, Namy, where Namy corresponds to the number of neurons in
the amygdala and Ai denotes the output of the ith neuron in the amygdala. Likewise, Oi

denotes the output of ith neuron in the orbitofrontal cortex. E is the output of the
amygdala after subtracting the input from the orbitofrontal cortex. aamy; bamy are
emotion learning rates, Vi, Wi are synaptic weights of connections between the sensory
cortex and amygdala, as well as the sensory cortex and orbitofrontal cortex, respec-
tively. Primary reward Rew is the reinforcing signal.

To confirm the performance of Morén’s emotional model, stimulus learning sim-
ulations were performed, and Fig. 3 shows the result. In the figure, S or S1, S2, S3 are
sensory inputs, Rew(=1.0) is a reward/reinforcing signal, E is the output of the model
(Eq. 4). The emotion learning coefficients are ðbÞ aamy ¼ 0:1; bamy ¼ 0:4;
ðcÞ aamy ¼ 0:05; bamy ¼ 0:1, respectively. From Fig. 3, we can conclude that the
stimulus from the sensory cortex was associated with a reward, and disassociated when
the reinforcing signal disappeared. Larger the aamy is, larger the output E is, and the
output E is close to the value of Rew(=1.0) quickly. However, if the signal of Rew
disappears, the output E also disappears. If there are any sensory inputs, smaller the
bamy is, slower the rate of the speed of disappearance is. As a result, it is said that we
can control the output E of emotions by changing the emotion learning coefficients,
aamy, bamy.

4 Emotion State Embedded Reinforcement Learning System

When a person saw an exciting landscape, he feels it pleasant or unpleasant. In this
paper, we introduce the degree of - (pleasant-displeasant) impression of the image
using the colour characteristics of the image as one of the emotional state to be defined
in the internal robot. Figure 4 shows the proposed emotion state embedded rein-
forcement learning system. It has a hierarchical structure, the first layer is an image
processing model, the second layer is a fuzzy inference model, the third layer is
emotional models by Moren, the fourth layer is the integrated emotional state model by
Russel and the fifth layer is the proposed extended reinforcement Q learning system
[7]. In the next subsections short contents of them are described.
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4.1 Image Processing Model: First Layer

In the first layer, RGB values of each pixel of the image acquired from the environment
is converted to the HSV (Hue, Saturation and Value) values, using the following (7).
These are transmitted to Fuzzy inference model of the second layer,

Fig. 3. Simulation results of the computational emotional model proposed by J. Moren et al. [2].
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H ¼

undefined if MIN ¼ MA

60 � G�R
MAX�MIN þ 1
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if MIN ¼ B

60 � G�R
MAX�MIN þ 3
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if MIN ¼ R

60 � G�R
MAX�MIN þ 5
� �
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8>>>>>><
>>>>>>:

V ¼ MAX

S ¼ MAX�MIN

ð7Þ

where Max = max{R, G, B}, MIN = min{R, G, B}.
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Fig. 4. Our proposed emotion state embedded hierarchical reinforcement learning system.

Fig. 5. Impression fuzzy inference model.
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4.2 Fuzzy Inference Model: Second Layer

In the second layer, the colour features (Saturation, Value which represent modifier:
dull thin, dark-bright-dark, and Hue which represents basic colour name: red, blue and
green) provided from the first layer is converted to a degree of pleasure-displeasure
using Mamdani type simplified singleton fuzzy inference.

The membership functions of Saturation, Value and Hue used in this paper are
shown in Figs. 6, 7 and 8, respectively. They are set corresponding to their values. The
fuzzy rules of Saturation and Value, Hue are shown in Tables 1 and 2. The impressions
Isv and IH in these Tables are decided according to our human impression. In Table 2,
the Impression (IH) of red is set to high and that of blue is set to low. This represents to
express the vitality impression with the colour.

Concretely, we inference the impression (I�SV) from the Saturation and Value,
taking the minimum value between the grade of S and V for each rule, and then taking
fuzzy singleton inference for defuzzification (see Fig. 5(a)). The impression (I�H) from
the Hue are calculated as same as I�SV(see Fig. 5(b)). Then, it is integrated to obtain an
impression value (IHSV) for a pixel by (8). This operation is applied to all the pixels.
Then the emotion of the entire image (Image impression: Imi) is obtained by taking the

Fig. 6. Membership function for Saturation (S).

Fig. 7. Membership function for Value (V).
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Fig. 8. Membership function for Hue (H).

Table 1. Fuzzy rule table for Saturation and Value.

Rule
number

If Then Impression
(ISV)Number of membership

func. of S
Number of membership
func. of V

1 3 1 Very
dark

0

2 3 2 Dark
grayish

0.3

3 4 2 Dark 0.6
4 1 3 Grayish 0.9
5 5 3 Deep 1.2
6 1 4 Very

pale
1.5

7 2 4 Pale 1.8
8 3 4 Light 2.1
9 5 4 Vivid 2.4

Table 2. Fuzzy rule table for Hue.

Rule number If Then Impression (IH)
Number of membership func. of H

1 1 Red 2.0
2 2 Yellow 1.5
3 3 Green 1.0
4 4 Light blue −1
5 5 Blue 1.0
6 6 Purple 1.5
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average of all of the impression values (9). Calculating Imi for each direction of the
image, sum of them is input to emotion model 1 (the third layer) which is responsible
for pleasure-displeasure as Rew.

Impression ðIHSVÞ ¼ Impression ðI�HÞ � Impression ðI�SVÞ ð8Þ

Image impression (Imi) ¼

P
pixel

Imression (IHSVÞ

pixel length
ð9Þ

4.3 Emotion Model: Third Layer

Figures 9 and 10 show the input and output for the pleasure-displeasure and
activity-disactivity emotion models respectively. The structures of them are same and
their learning method is explained in Sect. 3. The output of the emotion model for
pleasure-displeasure is E1, and E2 is output of the activity-disactivity emotion model.
These E1 and E2 are used for two axis for the integrated emotion state model in the
fourth layer.

Emotion Model 1. The function of the emotion model 1 whose structure is same as
the computational emotion model in Sect. 3 is to produce the emotion of
pleasure-displeasure by making use of characteristics of the image. Its input and output
components are shown in Fig. 9.

Emotion Model 2. The function of the emotion model 2 whose structure is same as
emotion model 1 is to produce the emotion of activity-disactivity by making use of the

Fig. 9. Emotion pleasure-displeasure model.

Fig. 10. Emotion activity-disactivity model.
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primary reward given by the environment. Its input and output components are shown
in Fig. 10.

4.4 Integrated Emotion State Model: Fourth Layer

In this paper we use the circumplex emotion model [11] as the integrated emotion state
model. The circumplex emotional model proposed by J.A. Russel consists of two axes
that are pleasure-displeasure (horizontal axis) and activity-disactivity (vertical axis); it
is shown in Fig. 11. The figure shows unidimensional scaling of 28 emotion words on
the plane. Russel said that all the emotions of the living body can be dealt by this
circumplex model. This model decides the current two dimensional emotional states of
the robot using two inputs E1 (displeasure–displeasure value) and E2 (activity– dis-
activity value) from the third layer as shown in Fig. 4.

4.5 Extended Q Learning Model with Emotion State: Fifth Layer

The Emotion extended Q learning [7] is almost all of commonly used standard Q
learning. The extended Q learning with emotion state has the emotion state of the robot
in addition to environment state of standard Q learning. The value function of the state,
emotion and action in the extended Q learning is represented as Qðs; se; aÞ. The update
equation of Qðs; se; aÞ is as follows;

Qðs; se; aÞ  Qðs; se; aÞ þ a r þ cmaxa0Qðs0; s0e; a0Þ � Qðs; se; aÞ
� �

; ð10Þ
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Fig. 11. The circumplex emotional model by J.A. Russel [11].
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where s: current environment state, se: current emotion state with two dimensions from
the fourth layer. a: current action, r: reward, s

0
: next current environment state, s

0
e: next

current emotion state, a: learning rate, c: discount rate. We use the greedy method as
selection policy of behaviors of the robot.

5 Computer Simulation

5.1 Preparation

Problem Description. To evaluate our proposed method, we carried out two computer
simulations using two grid world environments as shown in Figs. 13 and 14. The wall
surrounds around them. There are meaningful plural paths from start to goal. Simu-
lation 1 with environment A is easier path-finding problem than simulation 2 with
environment B. There are two same red foods in aisles in environment A. We consider
two types of robots constructed by changing emotion learning parameters. One robot
takes a path from start to goal taking both foods, another robot takes another path to the
goal, taking only one food. We found that each robot learned the different path from
start to goal, forming the different emotions by use of the different parameter for
learning of the emotion model.

Fig. 12. The environment A used in simulation 1.

Fig. 13. The environment B used in simulation 2.
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Assumptions. In these simulations, next followings are assumed,

(1) The robot knows his own position.
(2) The action which the robot can take is “to move one cell to one direction among

up, down, left and right”.
(3) If the robot collides with the wall, the robot stays at the position before collision.
(4) Movable and touch area of the robot are as follows:

Environment Used in Simulations. In simulation 1 with the environment A shown in
Fig. 12, two red foods are placed on the route. The autonomous robot is able to select
the paths for “shortest to goal without collecting the food,” “goal with only one of the
feeds” and “longest to goal with two foods”. Whether the robot choose which path
depends on the individuality of the robot. In this simulation, we show that the path the
robot select is decided according to the emotions.

In simulation 2 with environment B shown in Fig. 13, there are the cell which is
locked and the switch cell to release the lock. It is necessary for the robot to visit the
switch cell once to release the lock to get the goal. The robot has to take a circuitous
route to get the red and blue foods and also has to take a hazard path to take the shortest
path to the goal. So the robot has the dilemma, which route should be selected. It is
verified the dilemma is solved by the individuality of the robot.

In both simulations, when the robot gets the food at the first visit, the food disap-
pears and it keeps the food lost in the same episode.

(a) Image given as the red big food            (b) Image given as the blue small food 

Fig. 14. The image used as input to Image processing model in the simulation
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Emotion Formation in Simulations. In this simulation, the number n of the sensory
inputs sn is 4 in the computational emotion model shown in Fig. 2, toward the infor-
mation about up, down, right and left. If there is a food within 5 cells from the robot, si
is set to 1, otherwise 0 (see Fig. 15). According to the distance between the food and
the robot, Rew is set as following equations;

Prize ¼ 0:9distance Image impression (Imi) ð11Þ

Rew ¼
X
image

Prize; ð12Þ

The images used as input to Image processing model in the simulation are shown in
Fig. 13. A calculation example of values is shown in Fig. 14. The emotion model of
activity-disactivity is as to “activity of the robot itself”. The number of sensory inputs S
is 2, as to the information, one is always S = 1, the other is S = 1 if the robot is in
hazardous yellow area, or pink area, S =0 for otherwise. The value of Rew changes step
by step according to the rules of Table 3. Parameters used in the learning of the
emotion models are shown in Table 4. In Table 4, the method “Q+AE” is our proposed
extended Q learning with emotion state, however, the parameters used in the learning
of the emotion model are fixed while in the simulations. The method “Q+AE+S” is also
our proposed method. The bigger the learning coefficient parameter aamy is, the bigger
the output of the emotion model is. In reverse, the bigger the learning coefficient
parameter bamy is, the smaller the output of the emotion model is. In the emotional
model 1, the learning parameters aamy and bamy are changed in order to reduce the level
of the pleasure when the level is over 0.3. The emotion model 2 about the activity is
almost same as the emotion model 1.

Integrated Emotion State Model. The object of the integrated emotion state model in
the fourth layer is to decide the two dimensional emotion states SeðiÞ; ði ¼ 1; � � � ; 4Þ

Fig. 15. Example of the sensory input s and primary reward input (Rew) of the emotion model
for making the pleasure-displeasure value (E1).
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(Fig. 16), using the output E1 and E2 of the emotion models 1 and 2, respectively. In
the third layer and to transmit the state to extended Q learning system in the fifth layer.

Parameters and Rewards Used in the Emotion State Embedded Reinforcement
Learning. Rewards given by the environment are shown at Table 5. The parameters
used in the extended Q learning are given at Table 6.

Table 3. Primary rewards (Rew) for the emotion model 2 with activity-disactivity.

Initial value 0.4
When after 1 step –0.005 Blue food acquisition +0.2
Hazardous area: yellow −0.02 Red food acquisition +0.6
Hazardous area: purple −0.05 When release the yellow switch +0.4

Table 4. Parameters used in emotion learning of the two emotion models.

Pleasure - displeasure Activity - disactivity
Learning rate aamy Learning rate bamy Learning rate aamy Learning rate bamy

Q+AE 0.4 0.3 0.2 0.5
Q+AE+S 0.4 (E1 < 0.3) 0.3 (E1 < 0.3) 0.2 (E2 < 0.5) 0.5 (E2 < 0.5)

0.01(E1 � 0.3) 0.8 (E1 � 0.3) 0.01(E2 � 0.5) 0.8(E2 � 0.5)

Fig. 16. The circumplex emotion model used in simulations.

Table 5. Reward r given by the environment for the extended Q learning in simulation 1 or 2.

Arrival to the goal 10.0 Red food acquisition (given as image of Fig. 14(a)) 4.0
Collision to the wall −2.0 Blue small food acquisition (given as image of

Fig. 14(b))
1.5

Hazardous area:
yellow

−0.5 When release the blue switch 5.0

Hazardous area:
pink

−2.0 Others (when move 1 step) −0.1
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5.2 Simulation 1 and Its Result

To confirm the performance of the proposed method, we compared with three methods:
(1) the conventional Q learning method named “Q”, the other two methods are our
proposed methods, that is, (2) the method using extended Q learning with the learning
parameter fixed emotional model named “Q+AE”, (3) the method using extended Q
learning with the learning parameter changed emotional model named “Q+AE+S”.

The results of these three methods are shown at Table 7 and in Figs. 17, 18, 19, 20
and 21.

Table 6. Parameters used in extended Q learning.

Learning coefficient a 0.5 Discount rate c 0.95
Policy Greedy method

Table 7. Average convergence steps of 100 times in each method.

Q Q+AE Q+AE+S

Convergence step 11 23 17

Fig. 17. The number of steps from start to goal for each method (average of 100 times).

Fig. 18. The convergence path (arrow direction with green cells) for Q learning.
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Table 7 shows the average convergence steps of 100 times in each method. The
conventional Q learning method is the shortest steps from start to the goal without
taking the food. In the Q+AE method, it took the longest steps because that the robot
took the two foods. However in the Q+AE+S method, the robot took middle length of
the steps because of taking only the first available food. This difference depends on the
difference about emotion state with different emotional learning coefficient parameters.

Figure 18 shows the convergence path with green cells in the conventional Q
learning. In the Q learning, though the robot visited the cells on which the foods is
placed, it took the shortest path without taking foods finally.

Fig. 19. The convergence path (arrow direction with green cells) in the four emotion states for
the proposed method named “Q+AE”.

Fig. 20. The change of emotions from start to the goal for the proposed system named “Q+A E”
after the convergence.
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Figures 19 and 20 show the simulation results of the Q+AE method. Figure 19
shows the convergence path along green cells in the four emotion states for the method.
Figure 20 also shows the convergence path for the method. From Fig. 20, we can find
that the robot starts with the emotion Seð3Þ, passing through Seð4Þ, Seð2Þ and Seð1Þ,
finally it got the goal with Seð2Þ. Figure 19 shows the same situation with the green
cells. For example, the robot visited the two foods cells with Seð4Þ and Seð2Þ.
Figures 21 and 22 show the simulation results of the Q+AE+S method. Figure 21
shows the convergence path along green cells in the four emotion states. In Table 7, the
robot takes 17 steps from start to goal after getting only the food to be firstly discovered
on the path. Comparing Fig. 20 with Fig. 22, it is found that although the result of the
Q+AE method is the same as in the Q+AE method until the robot get the food to be

Fig. 21. The convergence path (arrow direction with green cells) in the four emotion states for
the proposed method named “Q+AE+S”.

Fig. 22. The change of emotions from start to the goal for the proposed system named “Q+AE
+S” after convergence.
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firstly discovered first on the path, however then in the Q+AE+S method the learning
coefficient parameters of the emotion model was changed on the way to reduce the
reaction for the stimulus from the environment. This is the reason why the robot didn’t
visit the cell the second food is placed.

5.3 Simulation 2 and Its Result

The difference between simulation 1 and simulation 2 is that simulation 2 is more
difficult to solve than simulation 1. In simulation 2 as seen in Fig. 13, there is the

Fig. 23. The number of steps to the goal for each method (average of 100 times).

Fig. 24. The convergence path (arrow direction with green) in the each emotion state for the
proposed method named “Q+AE”.
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rocked door cell on the way to the goal, the robot has to visit the switch cell to release
the rock of the door cell. Results of simulation 2 are shown in Figs. 23, 24, 25, 26 and
27. Explanations of them are similar with those of simulation 1.

The robot with the standard Q learning method failed to get goal, because it could
not distinguish difference after or before visiting the switch cell. This is the reason
simulation 2 are carried (Table 8).

Fig. 25. The change of emotions from start to the goal for the proposed method named
“Q+A E”.

Fig. 26. The convergence path (arrow direction with green) in the each emotion state for the
proposed method named “Q+AE+S”
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6 Conclusions

The method to construct an emotional robot based on regulation of emotional responses
with an emotion state embedded reinforcement learning system is proposed in this
paper. Besides environmental states, the emotional robot has emotional states which are
generated by stimulus received from sensor images. If the learning coefficient of
emotions in Amygdala model is changed, generated emotional states in the robot are
also different, even if the robot sees same sensor images. As a result, using the method,
we can make any kinds of robots, having same structures. In the computer simulation
for a path-finding problem with plural meaning paths, that is, having a dilemma, it was
verified that the robot could get a variety of behavior patterns by setting the different
learning parameters in emotional model learning. This means that by giving the dif-
ferent learning parameters to robots, it is able to make different robots, in spite of same
internal structure.

In this study, we considered the single robot case. In the future, we would like to try
to the multi robot case, i.e., to problems to be solved by multi-robots.

Acknowledgement. A part of this work was supported by Grant-in-Aid for Scientific Research
(JSPS 25330287, and 26330254).

Fig. 27. The change of emotions from start to the goal for the proposed method “Q+AE+S”.

Table 8. Average convergence steps to the goal of 100 times in each method.

Q Q+AE Q+AE+S

Convergence step to the goal – 32 28
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Abstract. In aircraft scenarios the proper interpretation of communication
meanings is mandatory for security reasons. In particular some communications,
occurring between the signalman and the pilot, rely on arm-and-hand visual
signals, which can be prone to misunderstanding in some circumstances as it can
be, for instance, because of low-visibility. This work intends to equip the sig-
nalman with wearable sensors, to collect data related to the signals and to
interpret such data by means of a SVM classification. In such a way, the pilot
can count on both his/her own evaluation and on the automatic interpretation of
the visual signal (redundancy increase the safety), and all the communications
can be stored for further querying (if necessary). Results indicate that the system
performs with a classification accuracy as high as 94.11 ± 5.54 % to
97.67 ± 3.53 %, depending on the type of gesture examined.

1 Introduction

Visual Signals (VS) can be referred as any means of communication depending on
sight. In general, VS is useful to support communication, or to increase the commu-
nication security (for instance when silence is mandatory), or to realize rapid means. In
particular, VS can be very effective when other forms of communications (written,
voice, radio, tactile) are impossible, or unavailable, or inadequate. Emblematic is the
real radio conversation occurred, on October 1995, between a US naval ship with
Canadian authorities off the coast of Newfoundland (an island off the east coast of the
North American mainland). Both the American than the Canadian asked the other to
divert the respective course to avoid a collision, but none wanted to respect the request,
realizing at the end, with a conceivable surprise, that the Canadians request come from
a lighthouse and not from a ship.

VS can be realized by means of different visual aids, such as flags, pyro-techniques,
flashlights, chemical light sticks, display panels, mirrors, strobes, smoke, etc. However,
in the general frame of VS, our interest is specifically focused on arm-and-hand VS
(A&HVS).

This special case of VS based on arm-and-hand posture/movements/gesture can be
effective only when based on standardized signals, which have to be mandatorily
familiar to all users. Unfortunately, a universal standard does not exist, but different
standards are for different fields of application. In rugby, for instance, the referee has 53
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A&HVS to count on (even if the most commonly used are only 12) [1]. Although there
are no official training A&HVS for dogs, several signals are anyway recognized by
most professional trainers and specially used in obedience competition. An A&HVS
guide exists, developed by Enform (the safety association for Canada’s upstream oil
and gas industry, www.enform.ca), for directing (driving and stopping) vehicles [2]. As
an alternative way of communication to vocal and sound, standard A&HVS can be
used in case of NBC (nuclear biological chemical) hazards [3]. Sign language neces-
sary for deaf people to communicate is based on A&HVS. In the pilot’s knowledge
guide [4], A&HVS are reported in graphical view to be learned and used between the
so-called wingman and the pilot.

This work deals with the special case of A&HVS related to specific vocabulary,
receipting, acknowledging and identification procedures, adopted as code meanings by
the US Department of the army (“Visual Signals, FM 21-60” manual).

The selection of this manual was made to take into account the requirements of the
customer of this work, which was the Italian Ministry of Defence, General Air
Armaments Directorate (Direzione Generale degli Armamenti Aeronautici
“Armaereo”, Ministero della Difesa).

We aim to take advantage from A&HVS, but intend also to try to overcome some
of the severe limitations the A&HVS can suffer from. In particular these limitations
come from the reduction (because of fog or other weather elements, or low light) or
occlusion (because of an object between actors/units that disrupts the line of sight) of
the visual range, from the possible misunderstanding or, in the special case of army
applications, from the enemy interception.

One or more of those limitations can be so relevant to produce even severe con-
sequences. We can mention, for instance, the airport disaster occurred, on October
2001, at Linate (Milan, Italy), when Scandinavian Airlines Flight 686 (McDonnell
Douglas MD-87), carrying 110 people, collided on take-off with a Cessna Citation CJ2
business jet, carrying 4 people. All 114 people were killed plus 4 people on the ground.
The following investigation revealed that the collision was caused by a number of
non-functioning and non-conforming safety systems, standards, and procedures at the
airport, but also because of the reduction of the visibility (thick fog, visibility less than
200 m) that highly limited the A&HVS communications between the signalman and
the aircrafts.

All mentioned, for the purposes of this work, we dressed the signalman with
wearable sensors to measure his/her posture/gesture, and used measured data to
automatically interpret his/her communication meaning. Our system can offer the
advantages of the redundancy of information, of the certainty of the signal meaning,
and of the storing of the coded information. The redundancy is useful in increasing the
security, the meaning certainty allows a double check to the pilot (with respect to what
he/she understand by his/her own), and the information storage can allow retrieval of
both rough and classified data, making it possible to realize a sort of “black box airport
runway”, similar to the “black box flight recorder”.
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2 Materials and Subjects

We intended to measure A&HVS. To do so, we could adopt the current gold-standard
systems, which are based on optical technology, realized by means of markers which,
dressed by the signalman, can be traced via cameras. In [5], for instance, 3D images
were used to track body and hand together, in order to understand gestures for intro-
ducing a multi-signal gesture database for aircraft handling signals.

However, the optical technology is not here meaningfully suitable for different
reasons: it is quite expensive (gold-standard apparatuses can cost as high as hundreds
of Euros/Dollars), it is highly operator-dependent (its usage is not a trivial matter), it is
high time-demanding for calibration procedure (which can last from several minutes up
to hours), it suffer from occlusion/low-light problems, and finally it cannot be used
everywhere (the cameras must be on-time arranged).

In order to overcome such limitations, we adopted wearable devices capable of
measuring the movements/gestures/postures of the user, as detailed in the following. In
particular, these wearable devices were intended for the measure of the kinematic of the
fingers, of the hand, of the wrist, and of the forearm.

2.1 Sensors

In order to measure the flexion of the finger joints, we adopted flex sensors termed
“Bend Sensors®” (by Flexpoint Sensor Systems Inc., Draper, Utah, USA). These
sensors are low-cost, low-weight, unobtrusive and, for our purposes, offer suitable
repeatability and reliability characteristics (already reported in [6]). The interested
reader can find a comprehensive survey on their mechanical, physical and electrical
properties in [7]. In particular, these flex sensors demonstrate a resistance versus
bending angle curve suitably fitted, within some limits, by a second order polynomial
curve.

Differently, in order to measure the movements of the wrist and of the forearm, we
utilized two inertial measurement units (IMUs) termed Sparkfun Razor (by SparkFun
Electronics, Niwot, Colorado, USA), each equipped with a 3-axis accelerometer and a
3-axis gyroscope.

2.2 Wearable Devices

Sensors integrated into a supporting glove realize a wearable device termed sensory
glove. In the latest years, this kind of glove has been founding more and more
applications in different contexts. For instance, in the medical field, sensory gloves
realize tools for the evaluation of manual dexterity of the surgeons [8], for the objective
assessment of hand rehabilitation after hand surgery of patients [9], for assessment of
the hand motion control development in infants [10], and for arthritis rehabilitation
applications [11]. In robotics, sensory gloves have been proposed in general for driving
a mechanical hand under a master-slave configuration [12], and in particular for
increasing the safety level in extravehicular manipulations [6]. In the social field, these
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gloves have been supported deaf people in automatic conversion of sign language to
spoken sentences [13]. In the music field, sensory gloves have been used for instinc-
tively controlling musical performances [14], and so ahead.

In all these occurrences, the sensory glove can be equipped with a different number
and a different type of sensors.

In this work, ten flex sensors and two IMUs were integrated in a supporting glove
made of Lycra®. In particular, ten flex sensors were housed into an equal number of
pockets sewn in correspondence of the metacarpo-phalangeal (MCP) and
proximal-inter-phalangeal (PIP) joints of each finger. None was utilized for the
distal-inter-phalangeal (DIP) joints believed not relevant for our purposes (in any case,
DIP flexion angles are normally correlated to the PIP ones in known percentages, as
reported in [15]). The two IMUs were housed into two pockets in correspondence of
the dorsal aspect of the hand and of the forearm respectively. In such a configuration, a
total of 16 degrees of freedom (DOF) were measured (10 coming from the flex sensors
and 6 from the inertial units).

The overall system was termed versatile-glove (V-Glove hereafter).
Figure 1 shows the arrangement of the sensors (here no glove is reported for the

sake of clarity).

2.3 Electronics

For the electronic circuitry we can distinguish one “source” and one “receiving”
subsystems.

Let’s start considering the source-subsystem (Fig. 2a), which is necessary to
acquire signals from the sensors, to provide A/D conversions, and to wired/wireless
transmit data to the receiving-subsystem. The wired transmission is intended for testing
purposes, while the wireless one to be in-field adopted.

Fig. 1. Arrangment of the sensors. 10 flex sensors were adopted to measure flexion/extension of
the fingers, 2 IMUs were adopted to measure movements of the hand and of the forearm. For the
sake of clarity, here no glove is reported, but a supporting glove houses all the sensors.
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Resistance values from the ten flex sensors were converted into voltage values by
means of an equal number of voltage dividers, while voltage values from the IMUs fed
directly the circuitry. The core of the source-subsystem was the integrated circuit
(IC) PIC18F47J53 (by Microchip, Chandler, AZ, US), 48 MHz-clocked, capable of
12 bit A/D conversion in 21ls. This IC offers only 10 analog inputs so that, in order to
acquire all the 22 signals from the V-Glove, we used a 2 � 16 channel multiplexer, the
ADG726 (by Analog Devices, Norwood, MA, USA) (its 10 spare input channels can
be used for eventually additional requirements).

Requests for the wireless protocol included short (or medium) transmission range,
low-medium transmission speed, low-power consumption, and scalability, so to handle
data of up to four sensory gloves at a time, all in an auto user-independent configuration
mode. To respond to these requests, we considered different protocols/standards, in par-
ticular the Bluetooth and Bluetooth smart/IEEE802.15.1, the IEC62591/WirelessHART,
the ISA100.11a, the DASH7, the Z-Wave, the ANT, the Wavenis, and the
IEEE802.15.1/ZigBee. The latter was our choice, since it better responded to the com-
mitment requirements.

Here, the transmission security was not a mandatory parameter but, in any case, all
the aforementioned protocols can be considered similar from a cryptography point of
view. The interested reader can find a survey comparison in [16].

Our wireless transmission was then obtained with the IEEE 802.15.4 radio trans-
ceiver module MRF24J40MA (by Microchip, Chandler, AZ, USA), which allows a
0 dBm transmission within a 100 m range.

The DC power supply was realized with a 3.7 V/1060 mAh Li-Ion single-cell
battery, charged and controlled by the IC BQ25015 (by Texas Instruments, Dallas, TX,
USA), which includes a DC-DC buck converter capable of 300 mA @ 3.3 V.

The receiving-subsystem is the coordinator of the wireless network (Fig. 2b). Its
functions are to create the network, to manage the communication with the source
subsystem and to furnish received data to the personal computer. It was based on the
same integrated circuit MRF24J40MA of the source-subsystem. The USB transmission
was based on the inner full-speed module of a second PIC18F47J53. The DC power

Fig. 2. Hardware of the (a) source and the (b) receiving subsystems. The source acquires data
from the sensors and send data to the receiver which fed a personal computer. The source
includes a battery, while the receiver is sourced directly by the personal computer to which it is
connected.
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supply was obtained from the USB port, with its 5 V reduced to the necessary 3.3 V
adopting an LDO voltage regulator.

2.4 Software

Software routines were developed to realize a virtual ambient to manage the calibration
of the V-Glove, to train the users, to acquire and to classify data, and to graphically
represent the recognized A&HVS. In order to make the overall system user-friendly,
the ensemble was operated via an ad-hoc developed graphical user interface
(GUI) (Fig. 3). Figure 4 shows the overall view of the system, including the sensory
V-Glove, the transmission and receiving hardware and the software interface.

2.5 Participants

Ten subjects took part in training and testing procedures. They were six males and four
females, 22–49 aged (average 29.4) right handed, with no motor or intellectual limi-
tations. All participants signed a written consensus.

Fig. 3. Panel view. A: status connection, B: directory selection, C: Signals/Numbers selection,
D: Training/Testing selection, E: Gesture selection, F: numbers selection, G: guided calibration,
H: visualization of the Training/Testing phase, I/L/M: name/image/description of the selected
gesture, N/O: 3D control-panel/window.
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2.6 Classifier

Among the most used classification approaches in the field of hand gesture recognition,
we have Artificial Neural Networks, e.g. the widely popular Multilayer Perceptron
(MLP), Hidden Markov Models (HMM) [17, 18], and Support Vector Machines
(SVM) [19]. In particular, HMM is a time-aware model, i.e. the output at a given
instant depends also on the previous history, while MLP and SVM are time-agnostic,
i.e. the current classification does not take into account previous ones [21].

The input to the algorithms can be either an entire movement (firstly recorded, then
classified) or a part of it by means, e.g., of the segmentation of data into overlapping
windows of a short duration (classified while recorded) [22]. The first approach is
typically simpler and allows the recognition process to have a global view of the
gesture (data is processed after the movement is completed), while the second approach
is appropriate in all those scenarios in which real-time constraints are important.
Time-agnostic models such as SVM can be used in either mode, while time-aware
algorithms such as HMM typically make more sense in the real-time scenario.

In the present project, we had a number of requirements and some degree of
flexibility that guided our choice regarding the classification approach. In particular,
with respect to flexibility, the option of entire movement registration followed by its
recognition was acceptable. With respect to constraints, it was important to use a
method that did not require the acquisition of too much training data, as the technical
staff has to be operative in a few time. Thus we opted for SVM, given that:

1. It allows for the classification of both linearly and non-linearly separable datasets
(by means of the “kernel trick”, see [23] for further information).

Fig. 4. The overall view of the system, made of a sensory glove, interfaced with a source
circuitry, which treats and send data to a personal computer running an ad-hoc developed
software.
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2. Its training procedure is typically faster than that of MLP, since depends only on the
number of example instances and not on their dimensionality [22].

3. It is less susceptible to overfitting with respect to MLP [24].
4. Good results can be obtained even with few training data, whereas MLP typically

requires a lot of example instances in order to mitigate the effect of overfitting.

3 Methods

3.1 Selection of Gestures

Here we work with A&HVS divided into “signalling” and “numbering”, both based on
a single arm-and-hand (A&HVS based on both arms-and-hands will be part of a future

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. The meanings of the gestures are: (a) freeze, (b) raise the boom, (c) lower the boom,
(d) start engine or prepare to move, (e) assemble or rally, (f) advance or move out, (g) attention,
(h) increase speed, double time or rush (i) slow down.
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development). In particular, the signal codes, we refer to, are a subset of the stan-
dardized ones, reported in Fig. 5, according to the US Department of the Army
(FM21-60 handbook, September 1987), while the number codes are the ones, made
with fingers, reported in Fig. 6, as mostly universally known. Regarding the signalling
showed in Fig. 5, a single arrowhead indicates a not continuously repeated (but
eventually repeated at intervals) A&HVS; a double arrowhead indicates a continuously
repeated A&HVS until acknowledged.

3.2 Signalling and Numbering Protocol

V-Glove Calibration. Before proceeding with the training/testing protocol, a cali-
bration procedure was necessary for the V-Glove. This was to acquire the minimum
and maximum electrical resistance values assumed by each flex sensor. Therefore, the
user had to sit in front of a desk with his arm placed on the table, the arm-forearm
forming an angle of 90°, and posing the hand in completely open (Fig. 7a) and
completely closed (fist, Fig. 7b) position, for at least 2 s respectively. From these
extreme positions, we obtained minimum and maximum resistance values, utilized to
establish, for each flex sensor, its first order polynomial fit of the resistance vs. angular
bending curve. We knew that a second order polynomial produced a better fitting with
respect the first order one that we adopted, anyway the introduced error was not so
effective, since it is meaningful only for angles <30° roughly, and low value angles
were not so relevant for our purposes.

Experimental Protocol. In executing each A&HVS, the user starts always from the
same posture: the body upright, facing forwards the pc screen, with shoulder blades
back and the arms hanged loosely to the sides, palms facing sides of the body.

For repeated A&HVS, the repetition was executed three times, while static postures
were requested to be maintained for 2 s as minimum.

(a) (b) (c)

(d) (e) (f)

Fig. 6. Numbering from (a) zero to (f) five.
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The protocol was as follows:

1. Glove dressing and calibration;
2. Training: three replays of each arm-and-hand visual signal;
3. Glove removal and rest period;
4. Glove dressing and calibration;
5. Training: two replays of each arm-and-hand visual signal;
6. Testing: five replays of all the visual signals;
7. Glove removal and rest period;
8. Glove dressing and calibration;
9. Testing: five replays of all the visual signals.

For numbering we used a training/testing protocol identical to the one described
above. We acquired 5 training repetitions and 10 testing repetitions of each signalling
and numbering procedure. We felt it was worth to stress that both training and test data
has been acquired in two distinct settings, i.e. after glove removal and re-dressing, so to
improve the generalization capability of the classifier (during learning) and better
estimate performance in a real-usage scenario (during testing).

3.3 Classification Framework

A rather general schema of a pattern recognition system is depicted in Fig. 8. The data
pre-processing block represents all those procedures that one may apply in order to
prepare data to enter the classification process. For example, noise reduction techniques
may be used, a portion may be extracted from a continuous stream, and aggregation of
different information sources may take place. Then, pre-processed data goes through the
feature extraction step, which is in charge of mapping the input patterns to a number of
relevant descriptors. The generated feature vector may include redundant, correlated or
actually irrelevant components, and/or be of too high dimensionality. In all those cases,
it may be worthwhile to consider a dimensionality reduction step, e.g. by means of
Principal Components Analysis (PCA). The reduced feature vector is then given as input
to the classifier, which assigns it to the class to which it is expected to belong, e.g. an
A&HVS in the present project. Finally, the classifier response can be post-processed,
e.g. to examine the related uncertainty and abstain if it is deemed to be too high.

Fig. 7. The two hand poses (flat hand and fist) for the calibration steps. The sensory glove is
omitted in the figure for clarity reasons.

Recognition of Arm-and-Hand Visual Signals by Means of SVM 453



Data Pre-processing. In the present system, to enhanced data quality, pre-processing
involved the use of an infinite impulse response (IIR) filter based on an exponentially
weighted moving average.

Feature Extraction. For the sake of simplicity and to discard irrelevant information,
whenever possible we considered only data coming from a subset of the sensors. In
particular, for the numbering gestures (Fig. 6), IMU information is not relevant (arm
and hand spatial orientation is not meaningful as it should be rather fixed in a con-
ventional, easily visible, configuration), so we analysed data coming from the flex
sensors only. Differently, the IMUs furnished fundamental indicators in the case of the
other arm-and-hand visual signals (Fig. 5).

Feature extraction for numbering gestures was based on the average value of each
flex sensor resistance. In particular, that value was computed with respected to three
adjacent signal windows positioned, respectively, at the beginning, around the center,
and at the end of the gesture. After preliminary analysis, the value at the beginning was
omitted since it resulted as non-relevant.

Feature extraction for the other A&HVS is more involved, as it requires considering
all the sensors, and cannot be reasonably limited to a small portion of the registration;
the entire gesture duration is meaningful. Various approaches are possible and they can
be roughly divided into time-domain based, frequency-domain based, and
time-frequency-domain based, or an ensemble of the previous. In this study, we opted
for the time-frequency-domain strategy and used as features the first 32 average
coefficients of the Discrete Wavelet Transform (DWT) based on the Daubechies-4
wavelet [25]. This choice originates from the desire to use a technique that is able to
successfully highlight frequency-domain characteristics of the signals while

Fig. 8. Generic schema of a pattern recognition framework. Optional steps are indicated as
dotted blocks.
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maintaining temporal localization, which we regarded as an important discriminatory
factor. Furthermore, the DWT can be implemented in an efficient manner, using e.g. the
filter banks approach [26]. The specific type of wavelet and the number of coefficients
were determined after preliminary evaluations. In particular, 32 coefficients were found
to be sufficient for expressing the complexity of the gestures while discarding, at the
same time, those detail differences that are not meaningful to the pattern recognition
process.

Classification: Support Vector Machines [27]. Support Vector Machines
(SVM) represents a powerful learning paradigm with solid statistical foundations [28].
In a geometrically intuitive way, we can approach SVM using the concept of margin in
a two-class recognition problem. Consider the example in Fig. 9. The image shows two
separating lines that we may interpret as the result of two algorithms that successfully
learned to distinguish between green and red objects. However, the blue line seems to
be preferable to the orange one, as it leads to a greater separation between the two
opposite instances that are closer to the boundary. In other words, the blue line seems to
be safer. This concept of safety margin is at the heart of SVM. Indeed, a SVM searches
for the separating hyperplane that maximizes the margin on training data, in the hope
that it will also provide better results on new instances. The learning problem can be
put in terms of a convex quadratic program and thus solved efficiently using
well-known techniques [29]. Moreover, the program complexity depends only on the
number of training patterns and not on their dimensionality. In case the data is not
linearly separable, it is possible to exploit the “kernel trick”, i.e. operate like if
non-linearly projecting data into another space and performing classification therein.
A variety of kernels can be used, e.g. polynomials, radial-basis functions, sigmoidal
functions. See [29] for further details.

In the present project, after preliminary evaluations, we opted for a Gaussian kernel.
This resulted into two free SVM parameters we had to select: the penalty factor C and

Fig. 9. Two discriminant line with different margin for the same (hypothetical) dataset. The blue
line is preferable, as it leads to a greater separation between the two opposite instances that are
closer to the boundary.
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the kernel radius R. In particular, the C parameter weights the influence of misclassified
points. A small value for C is likely to lead to a greater margin even if some points are
misclassified. Conversely, a large value for C will make the SVM to search for a
hyperplane that misclassifies few points, even if the resulting margin is small. The
R parameter, instead, represents the standard deviation of the Gaussian-like kernel
function. To estimate C and R we opted for a simple grid-search procedure, computing
the corresponding model accuracy on a subset of the training data.

Finally, we introduced an abstention mechanism in order to avoid producing a
possibly-wrong response in vague situations. In particular, if the difference in score
between the two most probable classes, a given input feature vector may be belong to is
below a given threshold, and then we prefer to abstain rather than outputting an
uncertain decision. The threshold value was chosen after preliminary evaluations as a
trade-off between responsiveness and safety (the higher the threshold, the higher the
safety, but also the higher the number of correct classifications that do not pass the
check, and thus the lower the responsiveness of the system).

Framework Structure and Implementation. Given the above described data
pre-processing, feature extraction and classification steps, the resulting pattern recog-
nition framework can be schematized as depicted in Fig. 10. The related software was
implemented as a set of C++ dynamic libraries, to be used by the main application we
realized in this project; the corresponding UML Component Diagram is shown in
Fig. 11. As reported in the diagram, we used the two open-source libraries wave++ [30]
and libsvm [31] to implement, respectively, the DWT and the SVM classifier. In
particular, to better suit our needs, we encapsulated the wave++ complexities inside an
ad-hoc developed library, VGloveWavelet, while libsvm was used directly inside the
main module, VGlovePRS. Figure 12 shows the structure of VGlovePRS according to
the UML Class Diagram formalism.

The class VGloveFeatureExtractor realizes feature extraction, differently for sig-
nalling and numbering as already mentioned. This class uses both the VGloveWavelet

Fig. 10. Pattern recognition framework of the present project.
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Fig. 11. UML Component Diagram (overall).

Fig. 12. UML Class Diagram VGlovePRS.
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library and the VGloveEWMA class, which implements the exponentially-weighted
moving average filter. Feature vectors are represented with the homonymous class.

The VGloveDataSet class holds an ensemble of feature vectors (possibly with
associated labels) useful for training or testing purposes. The VGloveVisualSig-
nalsDataset and the VGloveNumberGesturesDataset child classes represent, respec-
tively, signalling and numbering datasets. The VGloveClassifier class stands for the
SVM-based classifier, which relies on the libsvm library. Finally, the
VGloveVisualSignalsClf e VGloveNumberGesturesClf specializations represent the
classifiers for arm-and-hand signalling and numbering, respectively.

4 Results and Discussion

Table 1 reports the system performance in recognizing A&H signalling and number-
ing. As the results indicate, the system obtained a quite high average performance
(94.11 ± 5.54 % of accuracy for signalling gestures and 97.67 ± 3.53 % of accuracy
for numbering gestures) with remarkable peaks for some subjects, e.g. M1. It is also
worth to point out that no significant difference in performance was experienced
between males and females, even though, generally speaking, males’ performance was
slightly higher. This may be related to the fact that the V-Glove prototype was con-
ceived for a medium-sized male hand, and thus may have not perfectly fit some of the
females’ hands. In such a context, also the IMUs may have experienced a few trem-
bling because of the imperfect adherence of the glove to the skin. However, it is likely
that such problems could be easily overcome by considering further glove sizes.
Familiarity with the system seems to be important. Indeed, subjects M1, M2 and M3,
the ones that practised with the system the most, obtained optimal or near-optimal
performance, whereas greater variability characterized the accuracy achieved by the
other subjects. For example, F5 reached a very high recognition rate, whereas F2 and

Table 1. System accuracy, error rate, and abstention rate for the 10 subjects that participated to
the study (males indicated with M, females with F). Values are in percentage.

Subject Signalling Numbering
Accuracy ErrRate AbstRate Accuracy ErrRate AbstRate

M1 100 0 0 100 0 0
M2 97.78 0 2.22 100 0 0
M3 95.56 0 4.44 100 0 0
M4 94.44 0 5.56 100 0 0
M5 96.67 1.11 2.22 96.67 1.67 1.67
F1 87.78 3.33 8.89 90.00 3.33 6.67
F2 88.89 5.56 5.56 93.33 3.33 3.33
F3 97.78 0 2.22 100 0 0
F4 83.33 6.67 10.00 96.67 0 3.33
F5 98.89 0 1.11 100 0 0
Average 94.11 ± 5.54 1.67 ± 2.58 4.22 ± 3.30 97.67 ± 3.53 0.83 ± 1.41 1.5 ± 2.28
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F4 probably needed further experience with the system and the gestures. Finally, it is
possible to observe that the introduction of the abstention mechanism was effective. In
fact, the error rate of the system was quite low both for signalling and numbering
gestures, which is important since a misclassification can be critical in the application
context we refer to. Figure 13 reports the example of the graphical response of the
system to the user for a recognized gesture and for a non-recognized one (abstention).

5 Conclusions

We propose a hardware/software solution for recognition of arm-and-hand visual
signals (A&HVS). The system is intended to be camera-free, so grounded on the use of
wearable sensors, in particular flex sensors to register finger bending and inertial
measures units (IMU) to record arm and hand movements. All is packaged inside a
glove, called Versatile-Glove (V-Glove), so to be of immediate use for the subject.
Indeed, the system does not require a long calibration procedure, as for example
camera-based solutions do, and it also overcomes the typical limitations of optic
products, e.g. lighting, obstruction, need for complex setup of the environment (camera
placing). Moreover, all the components are cost-effective.

We focused on A&HVS related to specific vocabulary, receipting, acknowledging
and identification procedures, adopted as code meanings by the US Department of the
army (“Visual Signals, FM 21-60” manual). Our system can offer the advantages of the
redundancy of information, of the certainty of the signal meaning, of the storing of the
coded information. The redundancy is useful in increasing the security, making it
possible to realize a sort of “black box airport runway”, similar to the “black box flight
recorder”.

System testing involved 10 subjects, who performed both 6 numbering and 9 sig-
nalling gestures. Numbering gestures were mainly static, whereas the dynamic evolution
of movement was fundamental in signalling gestures. By means of a suitable pattern
recognition framework (signal pre-processing via an IIR filter, feature extraction via
both time-domain and time-frequency-domain characteristics, classification via Support
Vector Machines), we were able to successfully recognize the above mentioned

Fig. 13. The gesture (a) is recognized, (b) is not recognized (abstention).
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A&HVS (94.11 ± 5.54 % of accuracy for signalling gestures and 97.67 ± 3.53 % of
accuracy for numbering gestures). Moreover, given that misclassification is dangerous
in the application field we refer to, we introduced an abstention mechanism to avoid
producing a possibly wrong response in vague situations. Experimental tests confirmed
that such a procedure is effective. Indeed the error rate was only 1.67 ± 2.58 % for
signalling gestures and 0.83 ± 1.41 % for numbering gestures, with many
probable-errors turned into abstentions (abstention rate: 4.22 ± 3.30 % for signalling
gestures and 1.5 ± 2.28 % for numbering gestures).

Future work includes further tests with a greater number of participants, in order to
have a statistically relevant sample and thus further confirm (or refute) the insights we
obtained in the present study. Moreover, we would like to extend the gesture set and
consider also A&HVS for which both hands are necessary.
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Abstract. Spatial characterization of objects is a key-step for robots’ awareness
about the surrounding environment in which they are supposed to evolve and for
their autonomy within that environment. Within this context, this chapter deals
with visual evaluation of objects’ distances using Soft-Computing based
approaches and pseudo-3D standard low-cost sensor, namely the Kinect.
However, although presenting appealing advantages for indoor environment’s
perception, the Kinect has not been designed for metrological aims. The
investigated approach offers the possibility to use this low-cost pseudo-3D
sensor for the aforementioned purpose by avoiding 3D feature extraction and
thus exploiting the simplicity of the only 2D image’ processing. Experimental
results show the viability of the proposed approach and provide comparison
between different Machine-Learning techniques as Adaptive-network-based
fuzzy inference (ANFIS), Multi-layer Perceptron (MLP), Support vector
regression (SVR) and Bilinear Interpolation (BLI).

1 Introduction and Problem Stating

Robots’ visual perception of their surrounding environment and their ability of
metrological information extraction from the perceived environment are the most
important requirements for reaching or increasing robots’ autonomy (for example for
autonomous navigation or localization) within the environment in which they evolve
[1]. However, the complexity of real-world environment and real-time processing
constraints inherent to the robotics field make the above-mentioned tasks challenging.
In fact, if the use of sophisticated vision systems (e.g. high-precision visual sensors,
sophisticated stereovision apparatuses, etc.…) combined with sophisticated processing
techniques may offer an issue for overcoming a number of the above-mentioned
requirements within the condition of quite slow dynamics, they remain either too
expensive for every-day applications or out of real-time processing ability for pre-
vailing dynamics inherent to the concerned field.

The recent decade has been a token of numerous progresses in computer vision
techniques and visual sensors offering appealing potential to look at the above-mentioned
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dilemma within innovative slants. In fact, on the one hand, numerous image processing
techniques with reduced computational complexity have been designed ([2]) and on the
other hand, a number of new combined visual sensors with appealing features and
accessible prices have been presented as standard market products. Microsoft’s “Kinect”
[3], a Microsoft product which has been initially designed for Xbox play station in 2008,
is a typical example of such combined low-priced standard-market visual sensor that
allows a pseudo-3-D visual capture of the surrounding environment by providing the
depth (in meters) using an infra-red device and an color image using a standard camera
[4]. Even if its field of view is limited (about 60° vertical and 40° horizontal) and the data
is noisy, its ever-increasing usage in many domains as medical, robotics, home
automation, holograms’ creation, has been appreciable during recent years ([5–9]).
Kinect provides spatial depth coordinates between 0.6 m to 4 m and thus could swathe
spatial features within the aforementioned area. It is pertinent to notice that the
above-mentioned spatial coverage gap fits with the human’s typical indoor living space
making Kinect an appealing pseudo-3D sensor for our purpose.

It a recent previously realized work [10], we have investigated an Adaptive
Neuro-Fuzzy Inference System (ANFIS) approach and its comparison with a geometric
method using the Kinect for estimate distance between the objects. The depth and color
image provided by Kinect have been subjected to a ANFIS-based approach hybridizing
conventional image processing and the ANFIS model in order to extract the estimated
distance between the objects. In another recent work [11], a first comparison, realized
on the basis of simple objects’ distances evaluation in laboratory environment, has been
performed involving a number of most important popular Soft-computing issued
techniques. Extending the above-mentioned works, the present chapter gathers the
investigated concepts and extends the accomplished investigations to the real objects’
distance estimation within realistic environment.

The chapter is organized in five sections. The next section introduces the investi-
gated objects’ distance estimation concept. Section 3 briefly describes the considered
estimation models. In Sect. 4, validation’s results, obtained from implementation of the
investigated concept versus different considered estimation models are reported and
discussed. Finally, the last section concludes the chapter.

2 Brief Overview of Considered Multi-level Conjecture
Models

The investigated approach combines a conventional preprocessing stage and an esti-
mation inference model (see Fig. 1) exploiting the preprocessed 2-D color and depth
information images provided by the pseudo-3D sensor (namely Kinect). The estimation
inference model may be a conventional estimator or a Soft-Computing-based tech-
nique. The next section provides the considered estimation inference models used in
the present work. The computation chain consists of three phases:

1. Capturing 2-D color and depth images from Kinect.
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2. Conventional processing of the Kinect issued images extracting appropriate
features.

3. Inference model-based computation of distance between objects.

If the estimation inference model is a Soft-computing issued model, the compu-
tation of the estimated distance results from a Machine-Learning-based mapping
involving inputs (e.g. features extracted from preprocessing of the above-mentioned 2D
images) and corresponding examples of correct distances provided by a set of samples
composing a “learning database”. In this case, a learning phase is necessary in order to
carry out the aforementioned mapping. Figure 2 illustrates block diagrams of learning
and estimation (generalization) modes when the inference model is a Soft-computing-
based model.

The first phase is devoted to the capturing of 2-D color and depth images from
Kinect. The Kinect sensor can capture 2D color images at a resolution of up
to 640 � 480 pixels at 30 frames per second cadency. The depth images contain the
depth information providing directly the distance between the Kinect and visual pat-
terns located within the depth sensor’s field of view. The brightest fields in the depth
images correspond to closer distances and the darkest ones to the farther distances.
Kinect system provides directly the above-mentioned depth information in millimeters.

Fig. 1. General block diagram of the proposed approach.

Fig. 2. General block diagrams of the proposed approach when estimation inference uses a
Soft-computing-based model, showing learning mode (upper scheme) and generalization mode
(lower scheme).
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The Kinect can provide the depth image in 3 different resolutions: 640 � 480 (the
default), 320 � 240, and 80 � 60. Figure 3 gives an example of color and depth
images corresponding to two cubic objects captured by Kinect.

The second phase is devoted to conventional processing of the Kinect issued
images extracting appropriate features. It consists of several preprocessing tasks. The
visual data (namely the color image) is segmented and a resulting binary image is
constructed. The considered techniques are conventional segmentation techniques,
described in [2], which have been chosen on the basis the low-computational com-
plexity in order to fit real-time computation constraints. However, more sophisticated
processing techniques may be used as those proposed by Moreno, Ramik, Graña and
Madani in [12]. In the present work we used the Mean Shift Segmentation
(MSS) method, described and applied by [13–15]. As indicates the name of the
so-called segmentation, the segmentation task is based mainly on “mean shift” method
which is a computational technique to estimate the most accurate mean location “m(x)”
of the data (center of mass in Fig. 4). The estimation is performed by determining the
“mean shift vector” within some initial mean region (called also region of interest in
Fig. 4), which corresponds to the center of the region that represents maximum density
of pixels. The iterative process is repeated until find the mean shift vector following the
direction of the maximum increasing of the pixels’ density.

To calculate the mean location m xð Þ at the point x, we use the Eq. (1), where n
represent the number of point in the kernel K of the region of interest, xi is data point, x
initial mean location and K xð Þ stands for kernel function relative to the samples x
contributing to the estimation of the mean location. The mean shift, defined as the
difference between m xð Þ and x, is computed iteratively for obtaining the maximum
density in the local neighborhood. The process stops when m xð Þ ¼ x. The corre-
sponding mean shift vector has the direction of the gradient of the density estimate, and
thus, the interruption condition corresponds to search of regions within the kernel
where pixels are similar. Figure 5 shows an example of resulting segmented objects
using MSS method exploiting images provided by Kinect for two objects located at a

Fig. 3. Example of color (left-side picture) and depth (right-side picture) images of two cubic
objects provided by Kinect.
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given distance from each other. Once segmentation is performed, the minimum dis-
tance between the objects is calculated (number of pixels). Such distance is defined as
the minimum distance between two horizontal pixels in each object (line 1 in Fig. 5-b).

m xð Þ ¼
Pn

i¼1
K x� xið Þ xi

Pn

i¼1
K x� xið Þ

ð1Þ

The last phase of the computational chain deals with inference-based estimation of
the objects’ distance. The inputs are the features extracted from the preprocessing stage
and output is the estimated distance between the concerned objects provided in cm. It is
pertinent to note that the distance between two objects from the visual information of
detected items usually requires an accurate acquaintance relating the location of a same
detected item in both RGB and Depth images. In other words, before computing the
spatial attributes of a detected object, it is necessary to calibrate depth and RGB
cameras. Concerning the proposed approach, the estimation using Soft-computing-
based model allows escaping the calibration task, because the estimation is performed
by mapping the correspondence between the input visual features and the

Fig. 4. The principle of the mean shift segmentation method.

Fig. 5. Example resulting objects’ segmentation for two given objects located at a given
distance from each other (a) and the definition of distance between those two objects as the
distance between the closest pixels of each segmented region visible as line-1 (b).
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corresponding distances directly from representative examples (called learning patters),
constructing the estimation model directly. However, it is also pertinent to note that the
learning database (e.g. the used examples) has to contain enough examples in order to
be representative of the matching function. In fact, the quality of the learning database
plays a primary role in accuracy of estimated distances.

3 Brief Overview of Considered Multi-level Conjecture
Models

As it has been mentioned-above, several main Soft-computing techniques have been
considered for estimation inference model, namely Adaptive-network-based fuzzy
inference (ANFIS), Multi-layer Perceptron (MLP), Support vector regression
(SVR) and Bilinear Interpolation (BLI). This section is devoted to a brief reminder of
each considered model.

3.1 Adaptive-Network-Based Fuzzy Inference

Adaptive-network-based fuzzy inference (ANFIS) is a Fuzzy Inference System
(FIS) using Artificial Neural Network [16–18]. The rule base contains two fuzzy rules
of Takagi and Sugeno’s type, expressed here-bellow, where x and y are two input data,
fi is the fuzzy inference according to the desired output, Ai and Bi are labels of fuzzy
sets characterized by appropriate membership functions.

Rule 1 : if x is A1 and y is B1 then f1 ¼ p1 xþ q1 yþ r1

Rule 2 : if x is A2 and y is B2 then f2 ¼ p2 xþ q2 yþ r2

The membership functions of Ai and Bi, denoted lAi xð Þ and lBi yð Þ respectively, are
given by Eq. (2), where ai ; bi ; cif g is the parameters set. Figure 6 depicts the func-
tional block diagram of ANFIS.

Fig. 6. ANFIS structure.
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lAi xð Þ ¼ e
� x�ci

ai

� �2

and lAi xð Þ ¼ e
� y�ci

bi

� �2

ð2Þ

Layer1: Generating membership degree, where Ok;i is the node function, where k is
the number of the layer and i is the node position in the layer.

O1i ¼ lAi xð Þ with i 2 1 ; 2f g

Layer 2: Fuzzy intersection.

O2i ¼ wi ¼ lAi xð Þ � lBi yð Þ with i 2 1 ; 2f g

Layer3: Normalization.

O3i ¼ wi ¼ wi

w1 þw2
with i 2 1 ; 2f g

Layer4: Defuzzyfication, where pi ; qi ; rif g is the parameters set (consequent
parameters).

O4i ¼ wi fi ¼ wi pi xþ qi yþ rið Þ

Layer 5: The final output

O5i ¼
X

i

wi fi ¼
P
i
wi fi

P
i
wi

3.2 Multi-layer Perceptron

The Multi-Layer Perceptron (MLP) is a very well known artificial neural network
organized in layers and where information travels in one direction, from the input layer
to the output layer ([19, 20]). The input layer represents a virtual layer associated to the
inputs of data. It contains no neuron. The following hidden layers are layers of neurons.
The outputs of the neurons of the last layer always correspond to the desired data
outputs. MLP structure may include any number of layers and each layer may include
any number of neurons. Neurons are connected together by weighted connections. It is
the weight wi,j of these connections that manages the operation of the network and
ensures the transformation of inputs data to outputs data.

The back-propagation algorithm is used to minimize the quadratic error between
the current output (computed by the network in response to a given input stimulus) and
the desired value of the network’s output expected for this input. The neural network’s
weights are updated accordingly to the output error gradient and back-propagated in
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order to minimize the output error. In our work we use a MLP with one hidden layer,
where it have 304 input variables (inputs), 100 neurons on the hidden layer and 19
neurons on the output layer.

3.3 Support-Vector Machine

We will focus only the SVM regression basic principles. However, a detailed repre-
sentation can be found in [21, 22].

Let suppose a dataset D ¼ xi ; yið Þ 1� i�Njf g where xi 2 <N and yi 2 <. In the
e-SVM regression ([23]) the goal is to determine the function f xð Þ which deviates by at
most e from the actual target yi for all training data, and at the same time be as regular
as possible. In other words, the errors that are less than e be tolerated, while any greater
deviation than e be penalized. We begin by describing the case of the linear version
(functions), given by Eq. (3), where � ; �h i Denotes the dot product in <N .

f xið Þ ¼ w ; xih iþ b ð3Þ

The problem could be formulated as an optimization process minimizing what is
called “Flatness” w (an interval in the feature-space less sensitive to the perturbations)
accordingly to the set of conditions expressed by Eq. (4).

min
1
2

wk k2
� �

subject to yi� w ; xih i�b� e
w ; xih iþ b�yi � e

n
ð4Þ

f xð Þ ¼
XN

i¼1

aþ
i � a�i

� �
x ; xih iþ b

w ¼
XN

i¼1

aþ
i � a�i

� �
xi

ð5Þ

aþ
i eþ nþ

i � yi þ w ; xih iþ b
� � ¼ 0

a�i eþ n�i � yi � w ; xih iþ b
� � ¼ 0

�

lþ
i nþ

i ¼ C � aþ
ið Þ nþ

i ¼ 0
l�i n�i ¼ C � a�i

� �
n�i ¼ 0

� ð6Þ

max yi � w ; xih iþ e aþ
i \j C or a�i [ 0

� �

min yi � w ; xih i � e aþ
i [j 0 or a�i \C

� � ð7Þ

f approximates all pairs xi ; yið Þ with e precision. By associating a Lagrange mul-
tiplier to each constraint described above, the initial problem can be described by its
dual problem, which is a quadratic optimization problem without constraints. Such dual
formulation of the initial problem leads to express the function f as the set of Eqs. (5).
This is called “Support Vector” in which w can be completely described as a linear
combination of the training patterns xi. The parameter b in the Eq. 5 can be computed
by Karush-Kuhn-Tucker conditions expressed by the set of Eqs. (6). Then, within these
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conditions, one can exploit the system given by the set of Eqs. (7). Figure 7 shows
such a minimization process in a 2-D feature-space.

3.4 Bilinear Interpolation

The Bilinear Interpolation is based on a set of points in a given (considered)
feature-space ([24–27]). An example of such interpolation involving the points P1, P2,
P3 and P4 is shown in Fig. 8. Relating the investigated purpose, this example represents
four points (representing data: here, the distance between two objects expressed in
centimeters) in a 2D feature space that axes (features) are depth (e.g. distance of object
regarding the Kinect, expressed in centimeters) and distance between objects between
two objects (expressed in number of pixels). In other words, the goal is to search the
intermediate bilinear distance between two classes (points), each class represents a
distance between two objects in centimeters. This intermediate distance (P) is given by
Eq. (8).

P ¼ 1� kð Þ � 1� lð ÞP1 þ lP3½ � þ k 1� lð ÞP2 þ lP4½ � ð8Þ

Fig. 7. Adjusting the loss function in the case of a linear SVM.

Fig. 8. Schematic diagram of Bilinear Interpolation algorithm.
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4 Experimental Validation and Experimental Results

The reported results have been achieved on the basis of two databases collecting data
relative to various positions (e.g. different distances of those objects from each other
and different positions relative to the Kinect’s position) of two kind of objects. The first
one contains two simple (regular shape) objects and the second includes same kind of
data for more complex objects (e.g. with irregular shapes). The considered objects have
been placed on various positions regarding the Kinect’s referential (e.g. 100 cm to
270 cm from Kinect). The first database (database 1) contains 495 color images of the
regular objects and the second database (database 2) 304 pictures of irregular objects
(trapezoidal). Different distances between the concerned objects have been considered:
from 4 cm to 100 cm for the database 1 and from 1.7 cm to 91.7 cm for the database 2.
On the other hand, different positions relative to the Kinect have been considered:
100 cm to 263 cm for the database 1 and 100 cm to 250 cm for the database 2. The
capturing and segmenting processes have been developed using PYTHON. The dis-
tance prediction model has been realized using Matlab R2011environment.

The Table 1 resumes the different training and testing experiences.

Accordingly to the above-mentioned protocol and the experimental setup of Fig. 9,
the two aforementioned databases have been constructed following two policies:

Table 1. Summary.

Number of sample used for the experiment Distance estimation’s Max-Error rate

Database1 = 495 35 % (Fig. 13)

Fig. 9. Experimental setup.
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– For a same distance between the two concerned objects, a set of RGB and depth
images are collected from Kinect for different depths within the scale of 100 cm to
250 cm with a 10 cm step.

– The images’ collection is repeated for various distances between the two concerned
objects (e.g. increasing distance between the two objects) within the range of 5 cm
to 100 cm by increasing step of 5 cm and following the same depth range
whenever.

4.1 Objects’ Distance Estimation Using Direct Geometrical Computation

Before assessing the investigated approach, let have a look at an objects’ distance
estimation technique which uses geometrical computation issued from Kinect’s tech-
nological features and it’s cameras’ optical parameters. In fact, it is pertinent to remind
that a number of geometrical estimation of rough distance between objects perceived
by using Kinect have already been developed and described in [4]. However, they have
been designed in the frame of a sketchy estimation of the perceived objects and within
the spirit of a quite vague localization of objects by Xbox and the supported video
games.

A quite simple and direct computation of objects’ distance, taking into account
Kinect’s viewing fields exploits the fact that Kinect’s color imaging sensor provides an
image of 640-by-480 pixels with a 57° vertical viewing and 43 horizontal viewing
angles respectively. Thus, considering a 4-by-2.5 square meters viewing area (due to
Kinect camera’s limitations), spatial coordinates (in meters) of a perceived object in
Kinect’s referential could be estimated by Eqs. (9) and (10), where zm is the object’s
distance from the Kinect (depth information provided by infra-red sensor in meters),
p xð Þ and p xð Þ are horizontal and vertical pixels’ positions in image, respectively. In this
conditions, the distance between two objects characterized by their respective coor-
dinates xm1 ; ym1 ; zm1ð Þ and xm2 ; ym2 ; zm2ð Þ is estimated by Eq. (11).

xm ¼ 4 � 640
2

� p xð Þ
	 


tg 57=2ð Þ � zm
640

ð9Þ

ym ¼ 2:5 � 480
2

� p yð Þ
	 


tg 43=2ð Þ � zm
480

ð10Þ

dm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xm2 � xm1ð Þ2 þ ym2 � ym1ð Þ2 þ zm2 � zm1ð Þ2

q
ð11Þ

Table 1 summarizes the experimental evaluation relating the geometric approach
and Fig. 10 gives the obtained results providing estimation error versus depth for
distance-between-objects included in database 1. As it is visible in this figure, the
estimation error remains quite high revealing an average estimation error of 25 % while
attaining its maximum value around 35 %. As it has already been mentioned, these
unsatisfactory results could be explained taking into account the fact that the RGB
camera and the depth camera are not calibrated and thus the location of a same object in
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RGB image doesn’t fit the location of that object in depth image leading to quite
significant estimation error.

4.2 Soft-Computing Based Distance Estimation and Comparative Results

The two above-mentioned databases have been used for evaluating the considered
Soft-computing models in Machine-Learning-based distance evaluation. Table 2
resumes different training and testing configurations realized for this evaluation. We
show the experimental results of different Machine-Learning models: ANFIS, MLP,
SVR and Bilinear Interpolation. Figure 11 shows example of distance estimation
results for ANFIS, indicating the estimation error for the case where learning has been
performed using the second database and the test was performed using the first base
data.

Figures 12 and 13 show comparative results representing the distance estimation
error’s distribution in learning and testing modes, respectively. It is pertinent to remind
that Bilinear Interpolation (BLI) isn’t a learning-based technique and thus doesn’t
include a learning mode. Table 3 resumes mean-value and standard deviation of dis-
tance estimation error for each considered Soft-computing-based estimator. These
results highlight an improved accuracy of ANFIS in objects’ distances estimation:
lower estimation error as well in learning mode (Error ¼ 1� 0:95%) as in testing
mode (Error ¼ 2:4� 1:30%). This estimator leads also to lower standard deviation
and thus leads to lower boundary (e.g. maximum) estimation error.

Fig. 10. Experimental setup. Estimation error versus Distance-between-objects and depth
relative to geometric approach for database1.

Table 2. Databases configuration in learning and testing phases.

Learning Testing

Database2 (304 samples) Database1 (495 samples)
Database2 + 50 % Database1 (552 samples) 50 % Database1 (247 samples)
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Fig. 11. Example of distance estimation error in testing Mode (ANFIS).

Fig. 12. Comparison of distance estimation error’s distribution in “Learning” mode using
Database 2 (304 samples).

Fig. 13. Comparison of distance estimation error’s distribution in “Testing” mode using
Database1 (495 samples).
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4.3 Generalization to Objects’ Distance Evaluation in Realistic
Environment

The accomplished comparative study highlights the supremacy of ANFIS versus the
other considered Soft-computing-based approaches for estimating the objects’ dis-
tances. This is obvious from its mean-error and standard deviation relating the distri-
bution of estimation-error in learning (Fig. 12) and testing (Fig. 13) phases. In fact, as
shown by Fig. 12, relating the learning phase, more than 270 patters (among 304
learned patterns) have been correctly learned (estimation-error less than 1 %), about 25
(among 304) estimated with less than 2 % estimation-error and the estimation of only a
the estimation of a few of them (less than 15 among 304) surpasses 10 % estimation-
error. In the same way, concerning the testing phase, more than 410 patters (among 495
tested patterns) have been correctly evaluated (estimation-error less than 2 %) and also
the estimation of a few of them (less than 20 among 495) surpasses 10 %
estimation-error.

Taking into account the aforementioned very encouraging result, the decision has
been made to extend the evaluation of the ANFIS-based model considering realistic
environment with every-day objects that it may contain. It is pertinent to note that the
learning phase has been performed on the basis of the training databases mentioned in
Table 2. In other words, the present assessment of the investigated approach deals with
unknown (unlearned) objects. The system has been tested in a working space con-
taining customary every-day objects relative to such spaces as well as accustomed users
(humans) working in that locale. Figures 14 and 15 show two examples of sights
acquired by the Kinect and the corresponding depth images, respectively.

Table 3. Databases configuration in “Learning” and “Testing” phases.

Considered model Learning Testing

Error rError Error rError

ANFIS 1.03 % 1.94 % 2.46 % 2.73 %
MLP 6.95 % 10.73 % 7.57 % 11.21 %
SVR 11.08 % 12.39 % 8.73 % 12.12 %
BLI 5.70 % 2.58 %

Fig. 14. Two examples of sights acquired by the Kinect.
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The left-side image of the Fig. 14 corresponds to a typical working-corner where
viewed from the meeting corner located within the same space close to that
working-corner. The right-side picture corresponds to the above-mentioned
meeting-corner including two users (individuals). Figure 16 shows the segmented
items corresponding to objects of Fig. 14 and Table 4 labels the considered items of
this figure. The last column in Table 4 gives nominal (e.g. measured) distances
between the considered items. Finally, d Itemi ; Itemj

� �
denotes nominal distance

between two given items, where Item 2 O ; Hf g, i 2 1 ; � � � ; 6f g and j 2 1 ; � � � ; 6f g
with i 6¼ j. Objects O1 and O2 are located at about 190 cm (e.g. depth ffi 190 cm) from
Kinect and 20 cm from each other (e.g. d O1 ; O2ð Þ ¼ 20 cm). Concerning objects O1,
O2, O3 and O4, they are located at about 210 cm (e.g. depth ffi 210 cm) from Kinect.
The two individuals (e.g. humans H1 and H2), are located at about 260 cm (e.g.
depth ffi 260 cm) from Kinect Their respective distances from each others are given in
the last column of Table 4.

Table 5 resumes estimated distances between different considered items. d	 Itemi ;ð
ItemjÞ denotes estimated distance between two given items, where Item 2 O ; Hf g,
i 2 1 ; � � � ; 6f g and j 2 1 ; � � � ; 6f g with i 6¼ j. As it is visible from this table, dis-
tances between considered items (objects or humans) are accurately estimated revealing
estimation-errors not exceeding the error interval corresponding to ANFIS-based
estimator carried out in Subsect. 4.2. The obtained results for this unlearned (by the
system) set of items and the magnitude of the related errors show the leeway of the

Fig. 15. Depth images providing by Kinect system corresponding to RGB images of Fig. 14.

Fig. 16. Segmented items corresponding to objects of images of Fig. 14.
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investigated approach for handling vision-based robots’ navigation within realistic and
sufficiently complex indoor environments.

5 Conclusion

The obtained distance-estimation errors between two objects in generalization mode
show ANFIS-based estimator’s supremacy versus the three other considered
Soft-computing-based models (Error ¼ 2:4� 1:30% for ANFIS comparing to

Table 4. Nature and label of considered items within the Fig. 14 and nominal distances between
items.

Item Label Distance between items (cm)

Square Chair (left-side picture) O1 d(O1,O2) = 20
Round Chair (left-side picture) O2 d(O2,O1) = 20
Yellow Cap (right-side picture) O3 d(O3,O4) = 16; d(O3,O5) = 38; d

(O3,O6) = 64
Black Boiler (right-side picture) O4 d(O4,O3) = 16; d(O4,O5) = 10; d

(O4,O6) = 36
Orange Cap (right-side picture) O5 d(O5,O3) = 38; d(O5,O4) = 10; d(O5,

O6) = 19
Laptop (right-side picture) O6 d(O6,O5) = 19; d(O6,O4) = 36; d

(O6,O3) = 64
Left-side Human (right-side picture) H1 d(H1,H2) = 35.5
Right-side Human (right-side
picture)

H2 d(H2,H1) = 35.5

Table 5. Estimated distances between two items d	 Itemi ; Itemj
� �

and estimation-error.
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Error ¼ 7:6� 5:1% for MLP, Error ¼ 8:7� 6:0% for SVR and Error ¼ 5:7�
1:30% for BLI, respectively). Concerning MLP and SVR, they have been used within
a classification-like paradigm and thus lead to generating a large number of classes.
That is why the generalization remains quite far from expected accuracy. Concerning
the Bilinear Interpolation, this method is based on the local approximation strategy. In
fact, the disadvantage of this method is that the distance is calculated from the four
neighborhood distance values and depends on the precision of these four distances
values, without the possibility of a correction or adjustment. Although, out of sufficient
accuracy for metrological applications (where an estimation with high precision is
required), the ANFIS-based estimator presents appealing features relating robots’
navigation oriented applications. This has been corroborated by estimating distances
between a set of unlearned objects within the realistic environment of an everyday
working space containing as well objects as humans. Concerning the usage of Kinect as
sensory system, it is certain that this low-cost pseudo-3D sensor presents appealing
features for Machine-Awareness within indoor environments, although initially not
been designed for such range of applications. This appealing potential opens a wide
range of promising prospect vision and robotics applications. Concerning outdoor
environments, its limited visual field (covering a frontal sight comprised within 90 cm
and 4 m), even though compatible with human’s indoor living-space, remains
inadequate.

Farther works relating the investigated technique will concern the enhancement of
the estimation precision by using more sophisticated interpolation techniques.
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